Enhancing HIV-1 latency reversal through regulating the elongating RNA Pol II pause-release by a small-molecule disruptor of PAF1C

The polymerase-associated factor 1 complex (PAF1C) is a key, post-initiation transcriptional regulator of both promoter-proximal pausing and productive elongation catalyzed by RNA Pol II and is also involved in transcriptional repression of viral gene expression during human immunodeficiency virus-1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science advances 2023-03, Vol.9 (10), p.eadf2468-eadf2468
Hauptverfasser: Soliman, Shimaa H A, Cisneros, William J, Iwanaszko, Marta, Aoi, Yuki, Ganesan, Sheetal, Walter, Miriam, Zeidner, Jacob M, Mishra, Rama K, Kim, Eun-Young, Wolinsky, Steven M, Hultquist, Judd F, Shilatifard, Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The polymerase-associated factor 1 complex (PAF1C) is a key, post-initiation transcriptional regulator of both promoter-proximal pausing and productive elongation catalyzed by RNA Pol II and is also involved in transcriptional repression of viral gene expression during human immunodeficiency virus-1 (HIV-1) latency. Using a molecular docking-based compound screen in silico and global sequencing-based candidate evaluation in vivo, we identified a first-in-class, small-molecule inhibitor of PAF1C (iPAF1C) that disrupts PAF1 chromatin occupancy and induces global release of promoter-proximal paused RNA Pol II into gene bodies. Transcriptomic analysis revealed that iPAF1C treatment mimics acute PAF1 subunit depletion and impairs RNA Pol II pausing at heat shock-down-regulated genes. Furthermore, iPAF1C enhances the activity of diverse HIV-1 latency reversal agents both in cell line latency models and in primary cells from persons living with HIV-1. In sum, this study demonstrates that efficient disruption of PAF1C by a first-in-class, small-molecule inhibitor may have therapeutic potential for improving current HIV-1 latency reversal strategies.
ISSN:2375-2548
2375-2548
DOI:10.1126/sciadv.adf2468