Multiple cohort study of hospitalized SARS-CoV-2 in-host infection dynamics: Parameter estimates, identifiability, sensitivity and the eclipse phase profile

Within-host SARS-CoV-2 modelling studies have been published throughout the COVID-19 pandemic. These studies contain highly variable numbers of individuals and capture varying timescales of pathogen dynamics; some studies capture the time of disease onset, the peak viral load and subsequent heteroge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of theoretical biology 2023-05, Vol.564, p.111449, Article 111449
Hauptverfasser: Korosec, Chapin S., Betti, Matthew I., Dick, David W., Ooi, Hsu Kiang, Moyles, Iain R., Wahl, Lindi M., Heffernan, Jane M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Within-host SARS-CoV-2 modelling studies have been published throughout the COVID-19 pandemic. These studies contain highly variable numbers of individuals and capture varying timescales of pathogen dynamics; some studies capture the time of disease onset, the peak viral load and subsequent heterogeneity in clearance dynamics across individuals, while others capture late-time post-peak dynamics. In this study, we curate multiple previously published SARS-CoV-2 viral load data sets, fit these data with a consistent modelling approach, and estimate the variability of in-host parameters including the basic reproduction number, R0, as well as the best-fit eclipse phase profile. We find that fitted dynamics can be highly variable across data sets, and highly variable within data sets, particularly when key components of the dynamic trajectories (e.g. peak viral load) are not represented in the data. Further, we investigated the role of the eclipse phase time distribution in fitting SARS-CoV-2 viral load data. By varying the shape parameter of an Erlang distribution, we demonstrate that models with either no eclipse phase, or with an exponentially-distributed eclipse phase, offer significantly worse fits to these data, whereas models with less dispersion around the mean eclipse time (shape parameter two or more) offered the best fits to the available data across all data sets used in this work. This manuscript was submitted as part of a theme issue on “Modelling COVID-19 and Preparedness for Future Pandemics”. [Display omitted] •SARS-CoV-2 early in-host infection data is necessary for proper parameter estimation.•Time of peak viral load and associated parameters for SARS-CoV-2 cannot be accurately estimated with late infection data.•Robust exploration of in-host parameter variability and practical identifiability.•SARS-CoV-2 dynamics are highly variable across and within data sets.•The eclipse dynamics are best described by an Erlang distribution.
ISSN:0022-5193
1095-8541
1095-8541
DOI:10.1016/j.jtbi.2023.111449