Nav1.7 P610T mutation in two siblings with persistent ocular pain after corneal axon transection: impaired slow inactivation and hyperexcitable trigeminal neurons

Despite extensive study, the mechanisms underlying pain after axonal injury remain incompletely understood. Pain after corneal refractive surgery provides a model, in humans, of the effect of injury to trigeminal afferent nerves. Axons of trigeminal ganglion neurons that innervate the cornea are tra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neurophysiology 2023-03, Vol.129 (3), p.609-618
Hauptverfasser: Ghovanloo, Mohammad-Reza, Effraim, Philip R, Yuan, Jun-Hui, Schulman, Betsy R, Jacobs, Deborah S, Dib-Hajj, Sulayman D, Waxman, Stephen G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Despite extensive study, the mechanisms underlying pain after axonal injury remain incompletely understood. Pain after corneal refractive surgery provides a model, in humans, of the effect of injury to trigeminal afferent nerves. Axons of trigeminal ganglion neurons that innervate the cornea are transected by laser-assisted in situ keratomileusis (LASIK). Although most patients do not experience postoperative pain, a small subgroup develop persistent ocular pain. We previously carried out genomic analysis and determined that some patients with persistent pain after axotomy of corneal axons during refractive surgery carry mutations in genes that encode the electrogenisome of trigeminal ganglion neurons, the ensemble of ion channels and receptors that regulate excitability within these cells, including , which encodes sodium channel Nav1.7, a threshold channel abundantly expressed in sensory neurons that has been implicated in a number of pain-related disorders. Here, we describe the biophysical and electrophysiological profiling of the P610T Nav1.7 mutation found in two male siblings with persistent ocular pain after refractive surgery. Our results indicate that this mutation impairs the slow inactivation of Nav1.7. As expected from this proexcitatory change in channel function, we also demonstrate that this mutation produces increased spontaneous activity in trigeminal ganglion neurons. These findings suggest that this gain-of-function mutation in Nav1.7 may contribute to pain after injury to the axons of trigeminal ganglion neurons. Mechanisms underlying pain after axonal injury remain elusive. A small subgroup of patients experience pain after corneal refractive surgery, providing a human pain model after well-defined injury to axons. Here we analyze a mutation (P610T) in Nav1.7, a threshold sodium channel expressed in nociceptors, found in two siblings with persistent ocular pain after refractive surgery. We show that it impairs channel slow inactivation, thereby triggering inappropriate repetitive activity in trigeminal ganglion axons that signal eye pain.
ISSN:0022-3077
1522-1598
DOI:10.1152/jn.00457.2022