Fish liver damage related to the wastewater treatment plant effluents

Wastewater treatment plants (WWTPs) continuously release a complex mixture of municipal, hospital, industrial, and runoff chemicals into the aquatic environment. These contaminants are both legacy contaminants and emerging-concern contaminants, affecting all tissues in a fish body, particularly the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science and pollution research international 2023-04, Vol.30 (17), p.48739-48768
Hauptverfasser: Topić Popović, Natalija, Čižmek, Lara, Babić, Sanja, Strunjak-Perović, Ivančica, Čož-Rakovac, Rozelindra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Wastewater treatment plants (WWTPs) continuously release a complex mixture of municipal, hospital, industrial, and runoff chemicals into the aquatic environment. These contaminants are both legacy contaminants and emerging-concern contaminants, affecting all tissues in a fish body, particularly the liver. The fish liver is the principal detoxifying organ and effects of consistent pollutant exposure can be evident on its cellular and tissue level. The objective of this paper is thus to provide an in-depth analysis of the WWTP contaminants’ impact on the fish liver structure, physiology, and metabolism. The paper also gives an overview of the fish liver biotransformation enzymes, antioxidant enzymes, and non-enzymatic antioxidants, their role in metabolizing xenobiotic compounds and coping with oxidative damage. Emphasis has been placed on highlighting the vulnerability of fish to xenobiotic compounds, and on biomonitoring of exposed fish, generally involving observation of biomarkers in caged or native fish. Furthermore, the paper systematically assesses the most common contaminants with the potential to affect fish liver tissue. Graphical Abstract
ISSN:1614-7499
0944-1344
1614-7499
DOI:10.1007/s11356-023-26187-y