Improving Prediction of Suicide and Accidental Death After Discharge From General Hospitals With Natural Language Processing
IMPORTANCE: Suicide represents the 10th leading cause of death across age groups in the United States (12.6 cases per 100 000) and remains challenging to predict. While many individuals who die by suicide are seen by physicians before their attempt, they may not seek psychiatric care. OBJECTIVE: To...
Gespeichert in:
Veröffentlicht in: | JAMA psychiatry (Chicago, Ill.) Ill.), 2016-10, Vol.73 (10), p.1064-1071 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | IMPORTANCE: Suicide represents the 10th leading cause of death across age groups in the United States (12.6 cases per 100 000) and remains challenging to predict. While many individuals who die by suicide are seen by physicians before their attempt, they may not seek psychiatric care. OBJECTIVE: To determine the extent to which incorporating natural language processing of narrative discharge notes improves stratification of risk for death by suicide after medical or surgical hospital discharge. DESIGN, SETTING, AND PARTICIPANTS: In this retrospective health care use study, clinical data were analyzed from individuals with discharges from 2 large academic medical centers between January 1, 2005, and December 31, 2013. MAIN OUTCOMES AND MEASURES: The primary outcome was suicide as a reported cause of death based on Massachusetts Department of Public Health records. Regression models for prediction of death by suicide or accidental death were compared relying solely on coded clinical data and those using natural language processing of hospital discharge notes. RESULTS: There were 845 417 hospital discharges represented in the cohort, including 458 053 unique individuals. Overall, all-cause mortality was 18% during 9 years, and the median follow-up was 5.2 years. The cohort included 235 (0.1%) who died by suicide during 2.4 million patient-years of follow-up. Positive valence reflected in narrative notes was associated with a 30% reduction in risk for suicide in models adjusted for coded sociodemographic and clinical features (hazard ratio, 0.70; 95% CI, 0.58-0.85; P |
---|---|
ISSN: | 2168-622X 2168-6238 |
DOI: | 10.1001/jamapsychiatry.2016.2172 |