Observation of robust energy transfer in the photosynthetic protein allophycocyanin using single-molecule pump–probe spectroscopy

Photosynthetic organisms convert sunlight to electricity with near unity quantum efficiency. Absorbed photoenergy transfers through a network of chromophores positioned within protein scaffolds, which fluctuate due to thermal motion. The resultant variation in the individual energy transfer steps ha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature chemistry 2022-02, Vol.14 (2), p.153-159
Hauptverfasser: Moya, Raymundo, Norris, Audrey C., Kondo, Toru, Schlau-Cohen, Gabriela S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Photosynthetic organisms convert sunlight to electricity with near unity quantum efficiency. Absorbed photoenergy transfers through a network of chromophores positioned within protein scaffolds, which fluctuate due to thermal motion. The resultant variation in the individual energy transfer steps has not yet been measured, and so how the efficiency is robust to this variation has not been determined. Here, we describe single-molecule pump–probe spectroscopy with facile spectral tuning and its application to the ultrafast dynamics of single allophycocyanin, a light-harvesting protein from cyanobacteria. We disentangled the energy transfer and energetic relaxation from nuclear motion using the spectral dependence of the dynamics. We observed an asymmetric distribution of timescales for energy transfer and a slower and more heterogeneous distribution of timescales for energetic relaxation, which was due to the impact of the protein environment. Collectively, these results suggest that energy transfer is robust to protein fluctuations, a prerequisite for efficient light harvesting. In photosynthesis, photoenergy transfers through chromophore-containing proteins, which exhibit thermal fluctuations that change the positions of the chromophores. Now the ultrafast dynamics in allophycocyanin—a cyanobacterial light-harvesting protein—have been measured using single-molecule pump–probe spectroscopy. The data show that energy transfer precedes protein-induced photophysical heterogeneity, ensuring that light harvesting is robust to the heterogeneity.
ISSN:1755-4330
1755-4349
DOI:10.1038/s41557-021-00841-9