Spatio-temporal remodelling of the composition and architecture of the human ovarian cortical extracellular matrix during in vitro culture
Abstract STUDY QUESTION How does in vitro culture alter the human ovarian cortical extracellular matrix (ECM) network structure? SUMMARY ANSWER The ECM composition and architecture vary in the different layers of the ovarian cortex and are remodelled during in vitro culture. WHAT IS KNOWN ALREADY Th...
Gespeichert in:
Veröffentlicht in: | Human reproduction (Oxford) 2023-03, Vol.38 (3), p.444-458 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
STUDY QUESTION
How does in vitro culture alter the human ovarian cortical extracellular matrix (ECM) network structure?
SUMMARY ANSWER
The ECM composition and architecture vary in the different layers of the ovarian cortex and are remodelled during in vitro culture.
WHAT IS KNOWN ALREADY
The ovarian ECM is the scaffold within which follicles and stromal cells are organized. Its composition and structural properties constantly evolve to accommodate follicle development and expansion. Tissue preparation for culture of primordial follicles within the native ECM involves mechanical loosening; this induces undefined modifications in the ECM network and alters cell–cell contact, leading to spontaneous follicle activation.
STUDY DESIGN, SIZE, DURATION
Fresh ovarian cortical biopsies were obtained from six women aged 28–38 years (mean ± SD: 32.7 ± 4.1 years) at elective caesarean section. Biopsies were cut into fragments of ∼4 × 1 × 1 mm and cultured for 0, 2, 4, or 6 days (D).
PARTICIPANTS/MATERIALS, SETTING, METHODS
Primordial follicle activation, stromal cell density, and ECM-related protein (collagen, elastin, fibronectin, laminin) positive area in the entire cortex were quantified at each time point using histological and immunohistological analysis. Collagen and elastin content, collagen fibre characteristics, and follicle distribution within the tissue were further quantified within each layer of the human ovarian cortex, namely the outer cortex, the mid-cortex, and the cortex–medulla junction regions.
MAIN RESULTS AND THE ROLE OF CHANCE
Primordial follicle activation occurred concomitantly with a loosening of the ovarian cortex during culture, characterized by an early decrease in stromal cell density from 3.6 ± 0.2 × 106 at day 0 (D0) to 2.8 ± 0.1 × 106 cells/mm3 at D2 (P = 0.033) and a dynamic remodelling of the ECM. Notably, collagen content gradually fell from 55.5 ± 1.7% positive area at D0 to 42.3 ± 1.1% at D6 (P = 0.001), while elastin increased from 1.1 ± 0.2% at D0 to 1.9 ± 0.1% at D6 (P = 0.001). Fibronectin and laminin content remained stable. Moreover, collagen and elastin distribution were uneven throughout the cortex and during culture. Analysis at the sub-region level showed that collagen deposition was maximal in the outer cortex and the lowest in the mid-cortex (69.4 ± 1.2% versus 53.8 ± 0.8% positive area, respectively, P |
---|---|
ISSN: | 0268-1161 1460-2350 |
DOI: | 10.1093/humrep/dead008 |