HDAC8 regulates protein kinase D phosphorylation in skeletal myoblasts in response to stress signaling

Skeletal muscle differentiation involves activation of quiescent satellite cells to proliferate, differentiate and fuse to form new myofibers; this requires coordination of myogenic transcription factors. Myogenic transcription is tightly regulated by various intracellular signaling pathways, which...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical and biophysical research communications 2023-04, Vol.650, p.81-86
Hauptverfasser: Habibian, Justine S., Bolino, Matthew J., Ferguson, Bradley S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Skeletal muscle differentiation involves activation of quiescent satellite cells to proliferate, differentiate and fuse to form new myofibers; this requires coordination of myogenic transcription factors. Myogenic transcription is tightly regulated by various intracellular signaling pathways, which include members of the protein kinase D (PKD) family. PKD is a family of serine-threonine kinases that regulate gene expression, protein secretion, cell proliferation, differentiation and inflammation. PKD is a unique PKC family member that shares distant sequence homology to calcium-regulated kinases and plays an important role in muscle physiology. In this report, we show that class I histone deacetylase (HDAC) inhibition, and in particular HDAC8 inhibition, attenuated PKD phosphorylation in skeletal C2C12 myoblasts in response to phorbol ester, angiotensin II and dexamethasone signaling independent of changes in total PKD protein expression. As class I HDACs and PKD signaling are requisite for myocyte differentiation, these data suggest that HDAC8 functions as a potential feedback regulator of PKD phosphorylation to control myogenic gene expression. •HDAC8 regulates protein kinase D phosphorylation in myocytes.•Pharmacological and genetic HDAC8 inhibition attenuated PKD phosphorylation in myocytes in response to stress signaling.•Romidepsin inhibits HDACs 1, 2, and 8 in vitro and in myocytes.
ISSN:0006-291X
1090-2104
DOI:10.1016/j.bbrc.2023.02.010