Estimating the number of persons with HIV in jails via web scraping and record linkage

This paper presents methods to estimate the number of persons with HIV in North Carolina jails by applying finite population inferential approaches to data collected using web scraping and record linkage techniques. Administrative data are linked with web‐scraped rosters of incarcerated persons in a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Royal Statistical Society. Series A, Statistics in society Statistics in society, 2022-12, Vol.185 (Suppl 2), p.S270-S287
Hauptverfasser: Shook‐Sa, Bonnie E., Hudgens, Michael G., Kavee, Andrew L., Rosen, David L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents methods to estimate the number of persons with HIV in North Carolina jails by applying finite population inferential approaches to data collected using web scraping and record linkage techniques. Administrative data are linked with web‐scraped rosters of incarcerated persons in a non‐random subset of counties. Outcome regression and calibration weighting are adapted for state‐level estimation. Methods are compared in simulations and are applied to data from the US state of North Carolina. Outcome regression yielded more precise inference and allowed for county‐level estimates, an important study objective, while calibration weighting exhibited double robustness under misspecification of the outcome or weight model.
ISSN:0964-1998
1467-985X
DOI:10.1111/rssa.12909