Effects of Chronic Administration of Green Tea Ethanol Extract on Sleep Architecture in Mice: A Comparative Study with a Representative Stimulant Caffeine
Wakefulness is defined as a state in which individuals can react to a change in situations. The number of people staying awake and compensating for lack of sleep has increased in recent years. Caffeine, a representative stimulant, is the most extensively consumed compound globally and is mainly cons...
Gespeichert in:
Veröffentlicht in: | Nutrients 2023-02, Vol.15 (4), p.1042 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Wakefulness is defined as a state in which individuals can react to a change in situations. The number of people staying awake and compensating for lack of sleep has increased in recent years. Caffeine, a representative stimulant, is the most extensively consumed compound globally and is mainly consumed through coffee. Although green tea (
L.) contains high caffeine content like coffee, its arousal-inducing effects have not yet been studied. In the present study, we aimed to identify the arousal-inducing effect of GT during a chronic administration period (three weeks) using analysis of sleep architecture. Treatment with GT (1500 mg/kg) significantly elevated the sleep latency and wakefulness throughout the treatment period, and chronic administration of GT consistently maintained an increase in wakefulness for up to 3 h. During the treatment period, the arousal-inducing effect of GT (1500 mg/kg) occurred without any change in the tolerance phenomenon or withdrawal symptoms, similar to that observed with caffeine (25 mg/kg). GT (1500 mg/kg) containing 95.6 mg/kg of caffeine did not produce a better arousal-inducing effect than caffeine at 25 mg/kg. These results indicate that the arousal-inducing effect of GT persisted for three weeks without adverse effects and that GT can control the arousal-inducing effects of caffeine due to the hypnotic effects of its other constituents. |
---|---|
ISSN: | 2072-6643 2072-6643 |
DOI: | 10.3390/nu15041042 |