Potential Evaluation for Preparing Geopolymers from Quartz by Low-Alkali Activation

Alkali fusion of granite sawdust at a high alkali dosage can significantly improve geopolymerization activity, but also result in a high alkali consumption and a poor geopolymer performance. In this work, quartz, the most inert component in granite sawdust, was selected to explore the effect of low-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2023-02, Vol.16 (4), p.1552
Hauptverfasser: Ge, Wei, Chen, Jun, Min, Fanfei, Song, Shaoxian, Liu, Hui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Alkali fusion of granite sawdust at a high alkali dosage can significantly improve geopolymerization activity, but also result in a high alkali consumption and a poor geopolymer performance. In this work, quartz, the most inert component in granite sawdust, was selected to explore the effect of low-alkali activation on its reactivity and the compressive strength of geopolymer. It was found that the amount of activated quartz is mainly determined by the amount of alkali used for activation. The surface of a quartz particle can be effectively activated by an alkali fusion process at a low alkali dosage of 5%. The metakaolin-based geopolymer synthesized with quartz activated by an alkali dosage of 5% shows a high compressive strength of 41 MPa, which can be attributed to the enhanced interfacial interaction between quartz and the geopolymer gel, suggesting that low-alkali activation is a potential way to improve the geopolymerization ability of granite sawdust.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma16041552