Raman and Infrared Spectroscopy of Barium-Gallo Germanate Glasses Containing B2O3/TiO2

Modified barium gallo-germanate glass hosts are still worthy of attention in studying structure–property relationships. In this work, two different series of glass systems based on (60-x)GeO2-xTiO2-30BaO-10Ga2O3 and (60-x)GeO2-xB2O3-30BaO-10Ga2O3 (x = 10, 30, 50 mol%) were synthesized, and their pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2023-02, Vol.16 (4), p.1516
Hauptverfasser: Kowalska, Karolina, Kuwik, Marta, Pisarska, Joanna, Sitarz, Maciej, Pisarski, Wojciech A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Modified barium gallo-germanate glass hosts are still worthy of attention in studying structure–property relationships. In this work, two different series of glass systems based on (60-x)GeO2-xTiO2-30BaO-10Ga2O3 and (60-x)GeO2-xB2O3-30BaO-10Ga2O3 (x = 10, 30, 50 mol%) were synthesized, and their properties were studied using spectroscopic techniques. X-ray diffraction (XRD) patterns revealed that all fabricated glasses were fully amorphous material. The absorption edge shifted toward the longer wavelengths with a gradual substitution of GeO2. The spectroscopic assignments of titanium ions were performed with excitation and emission spectra compared to the additional sample containing an extremely low content of TiO2 (0.005 mol%). On the basis of Raman and FT-IR investigations, it was found that increasing the TiO2 content caused a destructive effect on the GeO4 and GeO6 structural units. The Raman spectra of a sample containing a predominantly TiO2 (50 mol%) proved that the band was located near 650 cm−1, which corresponded to the stretching vibration of Ti-O in TiO6 unit. The deconvoluted IR results showed that the germanate glass network consisted of the coexistence of two BO3 and BO4 structural groups. Based on the experimental investigations, we concluded that the developed materials are a promising candidate for use as novel glass host matrices for doping rare-earth and/or transition metal ions.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma16041516