Approaches for sRNA Analysis of Human RNA-Seq Data: Comparison, Benchmarking
Expression analysis of small noncoding RNA (sRNA), including microRNA, piwi-interacting RNA, small rRNA-derived RNA, and tRNA-derived small RNA, is a novel and quickly developing field. Despite a range of proposed approaches, selecting and adapting a particular pipeline for transcriptomic analysis o...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2023-02, Vol.24 (4), p.4195 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Expression analysis of small noncoding RNA (sRNA), including microRNA, piwi-interacting RNA, small rRNA-derived RNA, and tRNA-derived small RNA, is a novel and quickly developing field. Despite a range of proposed approaches, selecting and adapting a particular pipeline for transcriptomic analysis of sRNA remains a challenge. This paper focuses on the identification of the optimal pipeline configurations for each step of human sRNA analysis, including reads trimming, filtering, mapping, transcript abundance quantification and differential expression analysis. Based on our study, we suggest the following parameters for the analysis of human sRNA in relation to categorical analyses with two groups of biosamples: (1) trimming with the lower length bound = 15 and the upper length bound = Read length - 40% Adapter length; (2) mapping on a reference genome with bowtie aligner with one mismatch allowed (-v 1 parameter); (3) filtering by mean threshold > 5; (4) analyzing differential expression with DESeq2 with adjusted
-value < 0.05 or limma with
-value < 0.05 if there is very little signal and few transcripts. |
---|---|
ISSN: | 1422-0067 1661-6596 1422-0067 |
DOI: | 10.3390/ijms24044195 |