Circular RNA_HIPK3-Targeting miR-93-5p Regulates KLF9 Expression Level to Control Acute Kidney Injury
Acute kidney injury (AKI) is a clinical syndrome caused by various reasons that results in the rapid decline of renal function in a short period of time. Severe AKI can lead to multiple organ dysfunction syndrome. Circular RNA HIPK3 (circHIPK3) derived from the HIPK3 gene is involved in multiple inf...
Gespeichert in:
Veröffentlicht in: | Computational and mathematical methods in medicine 2023, Vol.2023 (1), p.1318817-1318817 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Acute kidney injury (AKI) is a clinical syndrome caused by various reasons that results in the rapid decline of renal function in a short period of time. Severe AKI can lead to multiple organ dysfunction syndrome. Circular RNA HIPK3 (circHIPK3) derived from the HIPK3 gene is involved in multiple inflammatory processes. The present research was performed to explore the function of circHIPK3 on AKI. The AKI model was established by ischemia/reperfusion (I/R) in C57BL/6 mice or hypoxia/reoxygenation (H/R) in HK-2 cells. The function and mechanism of circHIPK3 on AKI were explored via biochemical index measurement; hematoxylin and eosin (HE) staining; 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT); flow cytometry; enzyme-linked immunosorbent assay (ELISA); western blot; quantitative real-time polymerase chain reaction (RT-qPCR); detection of reactive oxygen species (ROS) and adenosine triphosphate (ATP); and luciferase reporter assays. circHIPK3 was upregulated in kidney tissues of I/R-induced mice and in H/R-treated HK-2 cells, while the microRNA- (miR-) 93-5p level was decreased in H/R-stimulated HK-2 cells. Furthermore, circHIPK3 silencing or miR-93-5p overexpression could reduce the level of proinflammatory factors and oxidative stress and recover the cell viability in H/R-stimulated HK-2 cells. Meanwhile, the luciferase assay showed that Krüppel-like transcription factor 9 (KLF9) was the downstream target of miR-93-5p. Forced expression of KLF9 blocked the function of miR-93-5p on H/R-treated HK-2 cells. Knockdown of circHIPK3 improved the renal function and reduced the apoptosis level in vivo. In conclusion, circHIPK3 knockdown alleviated oxidative stress and apoptosis and inhibited inflammation in AKI via miR-93-5p-mediated downregulation of the KLF9 signal pathway. |
---|---|
ISSN: | 1748-670X 1748-6718 |
DOI: | 10.1155/2023/1318817 |