Inhibition of Class IIa HDACs improves endothelial barrier function in endotoxin‐induced acute lung injury

Acute lung injury (ALI) is an acute inflammatory process arises from a wide range of lung insults. A major cause of ALI is dysfunction of the pulmonary vascular endothelial barrier but the mechanisms involved are incompletely understood. The therapeutic potential of histone deacetylase (HDAC) inhibi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cellular physiology 2021-04, Vol.236 (4), p.2893-2905
Hauptverfasser: Kovacs‐Kasa, Anita, Kovacs, Laszlo, Cherian‐Shaw, Mary, Patel, Vijay, Meadows, Mary L., Fulton, David J., Su, Yunchao, Verin, Alexander D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Acute lung injury (ALI) is an acute inflammatory process arises from a wide range of lung insults. A major cause of ALI is dysfunction of the pulmonary vascular endothelial barrier but the mechanisms involved are incompletely understood. The therapeutic potential of histone deacetylase (HDAC) inhibitors for the treatment of cardiovascular and inflammatory diseases is increasingly apparent, but the mechanisms by which HDACs regulate pulmonary vascular barrier function remain to be resolved. We found that specific Class IIa HDACs inhibitor, TMP269, significantly attenuated the lipopolysaccharide (LPS)‐induced human lung microvascular endothelial cells (HLMVEC) barrier compromise in vitro and improved vascular barrier integrity and lung function in murine model of ALI in vivo. TMP269 decreased LPS‐induced myosin light chain phosphorylation suggesting the role for Class IIa HDACs in LPS‐induced cytoskeleton reorganization. TMP269 did not affect microtubule structure and tubulin acetylation in contrast to the HDAC6‐specific inhibitor, Tubastatin A suggesting that Class IIa HDACs and HDAC6 (Class IIb) regulate endothelial cytoskeleton and permeability via different mechanisms. Furthermore, LPS increased the expression of ArgBP2 which has recently been attributed to HDAC‐mediated activation of Rho. Depletion of ArgBP2 abolished the ability of LPS to disrupt barrier function in HLMVEC and both TMP269 and Tubastatin A decreased the level of ArgBP2 expression after LPS stimulation suggesting that both Class IIa and IIb HDACs regulate endothelial permeability via ArgBP2‐dependent mechanism. Collectively, our data strongly suggest that Class IIa HDACs are involved in LPS‐induced ALI in vitro and in vivo via specific mechanism which involved contractile responses, but not microtubule reorganization. Class IIa histone deacetylases are involved in lipopolysaccharide‐induced acute lung injury in vitro and in vivo via specific mechanism which involved contractile responses, but not microtubule reorganization.
ISSN:0021-9541
1097-4652
DOI:10.1002/jcp.30053