Alternative polyadenylation alters protein dosage by switching between intronic and 3′UTR sites
Alternative polyadenylation (APA) creates distinct transcripts from the same gene by cleaving the pre-mRNA at poly(A) sites that can lie within the 3′ untranslated region (3′UTR), introns, or exons. Most studies focus on APA within the 3′UTR; however, here, we show that CPSF6 insufficiency alters pr...
Gespeichert in:
Veröffentlicht in: | Science advances 2023-02, Vol.9 (7) |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Alternative polyadenylation (APA) creates distinct transcripts from the same gene by cleaving the pre-mRNA at poly(A) sites that can lie within the 3′ untranslated region (3′UTR), introns, or exons. Most studies focus on APA within the 3′UTR; however, here, we show that CPSF6 insufficiency alters protein levels and causes a developmental syndrome by deregulating APA throughout the transcript. In neonatal humans and zebrafish larvae, CPSF6 insufficiency shifts poly(A) site usage between the 3′UTR and internal sites in a pathway-specific manner. Genes associated with neuronal function undergo mostly intronic APA, reducing their expression, while genes associated with heart and skeletal function mostly undergo 3′UTR APA and are up-regulated. This suggests that, under healthy conditions, cells toggle between internal and 3′UTR APA to modulate protein expression.
CPSF6 loss disrupts polyadenylation site choice and causes a developmental syndrome in humans and zebrafish. |
---|---|
ISSN: | 2375-2548 2375-2548 |
DOI: | 10.1126/sciadv.ade4814 |