混合语音段特征双边式优选算法用于帕金森病分类研究

近年来,已有研究证明基于语音数据可实现帕金森病(PD)的诊断,但是目前相关研究主要集中在特征提取及分类器设计等方面,对于样本优选方面考虑不足。本课题组前期研究结果表明,样本优选可有效改进分类准确性,但是样本和语音的相关关系至今还未能深入研究。因此,本文提出了基于相关特征加权和多核学习算法,同时对语音段和特征进行优选,用于发现语音段和特征的协同效应,从而达到提升PD分类准确性的目的。实验结果表明,本文算法针对受试者的分类准确率达到了82.5%,较已有文献算法提高了30.5%。此外,本文算法还挖掘出了语音段和特征的协同效应,对语音标记物提取有一定参考价值。...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sheng wu yi xue gong cheng xue za zhi 2017-12, Vol.34 (6), p.942-948
Hauptverfasser: 张小恒, 王力锐, 曹垚, 王品, 张成, 杨刘洋, 李勇明, 张艳玲, 承欧梅
Format: Artikel
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:近年来,已有研究证明基于语音数据可实现帕金森病(PD)的诊断,但是目前相关研究主要集中在特征提取及分类器设计等方面,对于样本优选方面考虑不足。本课题组前期研究结果表明,样本优选可有效改进分类准确性,但是样本和语音的相关关系至今还未能深入研究。因此,本文提出了基于相关特征加权和多核学习算法,同时对语音段和特征进行优选,用于发现语音段和特征的协同效应,从而达到提升PD分类准确性的目的。实验结果表明,本文算法针对受试者的分类准确率达到了82.5%,较已有文献算法提高了30.5%。此外,本文算法还挖掘出了语音段和特征的协同效应,对语音标记物提取有一定参考价值。
ISSN:1001-5515
DOI:10.7507/1001-5515.201704061