Vibrio cholerae Porin OmpU Activates Dendritic Cells via TLR2 and the NLRP3 Inflammasome
OmpU is one of the major porins of Vibrio cholerae, a Gram-negative human pathogen. Previously, we showed that OmpU stimulates host monocytes and macrophages and induces the production of proinflammatory mediators via activation of the Toll-like receptor 1/2 (TLR1/2)-MyD88-dependent pathways. In the...
Gespeichert in:
Veröffentlicht in: | Infection and immunity 2023-02, Vol.91 (2), p.e0033222-e0033222 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | OmpU is one of the major porins of Vibrio cholerae, a Gram-negative human pathogen. Previously, we showed that OmpU stimulates host monocytes and macrophages and induces the production of proinflammatory mediators via activation of the Toll-like receptor 1/2 (TLR1/2)-MyD88-dependent pathways. In the present study, we show that OmpU activates murine dendritic cells (DCs) via activation of the TLR2-mediated pathway and the NLRP3 inflammasome, leading to the production of proinflammatory cytokines and DC maturation. Our data reveal that although TLR2 plays an important role in providing both priming and the activation signal for the NLRP3 inflammasome in OmpU-activated DCs, OmpU is capable of activating the NLRP3 inflammasome, even in the absence of TLR2, if a priming signal is given. Furthermore, we show that the OmpU-mediated interleukin-1β (IL-1β) production in DCs depends on calcium flux and mitochondrial reactive oxygen species (mitoROS) generation. Interestingly, both OmpU translocation to the mitochondria of DCs as well as calcium signaling contribute to mitoROS production and prompt NLRP3 inflammasome activation. We also demonstrate that OmpU induces downstream signaling via activation of phosphoinositide-3-kinase (PI3K)-AKT, protein kinase C (PKC), mitogen-activated protein kinases (MAPKs), and transcription factor NF-κB. Furthermore, our data reveal that OmpU-mediated activation of TLR2 induces signaling via PKC, MAPKs p38 and extracellular signal-regulated kinase (ERK), and transcription factor NF-κB; however, PI3K and MAPK Jun N-terminal protein kinase (JNK) are activated in TLR2 independent manner. |
---|---|
ISSN: | 0019-9567 1098-5522 |
DOI: | 10.1128/iai.00332-22 |