Nonredundant Dimethyl Sulfoxide Reductases Influence Salmonella enterica Serotype Typhimurium Anaerobic Growth and Virulence

Facultative anaerobic enteric pathogens can utilize a diverse array of alternate electron acceptors to support anaerobic metabolism and thrive in the hypoxic conditions within the mammalian gut. Dimethyl sulfoxide (DMSO) is produced by methionine catabolism and can act as an alternate electron accep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Infection and immunity 2023-02, Vol.91 (2), p.e0057822-e0057822
Hauptverfasser: Cruz, E, Haeberle, A L, Westerman, T L, Durham, M E, Suyemoto, M M, Knodler, L A, Elfenbein, J R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Facultative anaerobic enteric pathogens can utilize a diverse array of alternate electron acceptors to support anaerobic metabolism and thrive in the hypoxic conditions within the mammalian gut. Dimethyl sulfoxide (DMSO) is produced by methionine catabolism and can act as an alternate electron acceptor to support anaerobic respiration. The DMSO reductase complex consists of three subunits, DmsA, DmsB, and DmsC, and allows bacteria to grow anaerobically with DMSO as an electron acceptor. The genomes of nontyphoidal Salmonella enterica encode three putative operons, but the impact of the apparent genetic redundancy in DMSO reduction on the fitness of nontyphoidal S. enterica during infection remains unknown. We hypothesized that DMSO reduction would be needed for S. enterica serotype Typhimurium to colonize the mammalian gut. We demonstrate that an Typhimurium mutant with loss of function in all three putative DMSO reductases (Δ ) poorly colonizes the mammalian intestine when the microbiota is intact and when inflammation is absent. DMSO reduction enhances anaerobic growth through nonredundant contributions of two of the DMSO reductases. Furthermore, DMSO reduction influences virulence by increasing expression of the type 3 secretion system 2 and reducing expression of the type 3 secretion system 1. Collectively, our data demonstrate that the DMSO reductases of Typhimurium are functionally nonredundant and suggest DMSO is a physiologically relevant electron acceptor that supports S. enterica fitness in the gut.
ISSN:0019-9567
1098-5522
DOI:10.1128/iai.00578-22