Improved image quality in transcatheter aortic valve implantation planning CT using deep learning-based image reconstruction

This study aims to evaluate the impact of a novel deep learning-based image reconstruction (DLIR) algorithm on the image quality in computed tomographic angiography (CTA) for pre-interventional planning of transcatheter aortic valve implantation (TAVI). We analyzed 50 consecutive patients (median ag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quantitative imaging in medicine and surgery 2023-02, Vol.13 (2), p.970-981
Hauptverfasser: Heinrich, Andra, Yücel, Seyrani, Böttcher, Benjamin, Öner, Alper, Manzke, Mathias, Klemenz, Ann-Christin, Weber, Marc-André, Meinel, Felix G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study aims to evaluate the impact of a novel deep learning-based image reconstruction (DLIR) algorithm on the image quality in computed tomographic angiography (CTA) for pre-interventional planning of transcatheter aortic valve implantation (TAVI). We analyzed 50 consecutive patients (median age 80 years, 25 men) who underwent TAVI planning CT on a 256-dectector-row CT. Images were reconstructed with adaptive statistical iterative reconstruction V (ASIR-V) and DLIR. Intravascular image noise, edge sharpness, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were quantified for ascending aorta, descending aorta, abdominal aorta and iliac arteries. Two readers (one radiologist and one interventional cardiologist) scored task-specific subjective image quality on a five-point scale. DLIR significantly reduced median image noise by 29-57% at all anatomical locations (all P
ISSN:2223-4292
2223-4306
DOI:10.21037/qims-22-639