A viral movement protein co-opts endoplasmic reticulum luminal-binding protein and calreticulin to promote intracellular movement
Intracellular movement is an important step for the initial spread of virus in plants during infection. This process requires virus-encoded movement proteins (MPs) and their interaction with host factors. Despite the large number of known host factors involved in the movement of different viruses, l...
Gespeichert in:
Veröffentlicht in: | Plant physiology (Bethesda) 2023-02, Vol.191 (2), p.904-924 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Intracellular movement is an important step for the initial spread of virus in plants during infection. This process requires virus-encoded movement proteins (MPs) and their interaction with host factors. Despite the large number of known host factors involved in the movement of different viruses, little is known about host proteins that interact with one of the MPs encoded by potexviruses, the triple-gene-block protein 3 (TGBp3). The main obstacle lies in the relatively low expression level of potexviral TGBp3 in hosts and the weak or transient nature of interactions. Here, we used TurboID-based proximity labeling to identify the network of proteins directly or indirectly interacting with the TGBp3 of a potexvirus, Bamboo mosaic virus (BaMV). Endoplasmic reticulum (ER) luminal-binding protein 4 and calreticulin 3 of Nicotiana benthamiana (NbBiP4 and NbCRT3, respectively) associated with the functional TGBp3-containing BaMV movement complexes, but not the movement-defective mutant, TGBp3M. Fluorescent microscopy revealed that TGBp3 colocalizes with NbBiP4 or NbCRT3 and the complexes move together along ER networks to cell periphery in N. benthamiana. Loss- and gain-of-function experiments revealed that NbBiP4 or NbCRT3 is required for the efficient spread and accumulation of BaMV in infected leaves. In addition, overexpression of NbBiP4 or NbCRT3 enhanced the targeting of BaMV TGBp1 to plasmodesmata (PD), indicating that NbBiP4 and NbCRT3 interact with TGBp3 to promote the intracellular transport of virion cargo to PD that facilitates virus cell-to-cell movement. Our findings revealed additional roles for NbBiP4 and NbCRT3 in BaMV intracellular movement through ER networks or ER-derived vesicles to PD, which enhances the spread of BaMV in N. benthamiana. |
---|---|
ISSN: | 0032-0889 1532-2548 |
DOI: | 10.1093/plphys/kiac547 |