Semisupervised white matter hyperintensities segmentation on MRI
This study proposed a semisupervised loss function named level‐set loss (LSLoss) for cerebral white matter hyperintensities (WMHs) segmentation on fluid‐attenuated inversion recovery images. The training procedure did not require manually labeled WMH masks. Our image preprocessing steps included bia...
Gespeichert in:
Veröffentlicht in: | Human brain mapping 2023-03, Vol.44 (4), p.1344-1358 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1358 |
---|---|
container_issue | 4 |
container_start_page | 1344 |
container_title | Human brain mapping |
container_volume | 44 |
creator | Huang, Fan Xia, Peng Vardhanabhuti, Varut Hui, Sai‐Kam Lau, Kui‐Kai Ka‐Fung Mak, Henry Cao, Peng |
description | This study proposed a semisupervised loss function named level‐set loss (LSLoss) for cerebral white matter hyperintensities (WMHs) segmentation on fluid‐attenuated inversion recovery images. The training procedure did not require manually labeled WMH masks. Our image preprocessing steps included biased field correction, skull stripping, and white matter segmentation. With the proposed LSLoss, we trained a V‐Net using the MRI images from both local and public databases. Local databases were the small vessel disease cohort (HKU‐SVD, n = 360) and the multiple sclerosis cohort (HKU‐MS, n = 20) from our institutional imaging center. Public databases were the Medical Image Computing Computer‐assisted Intervention (MICCAI) WMH challenge database (MICCAI‐WMH, n = 60) and the normal control cohort of the Alzheimer's Disease Neuroimaging Initiative database (ADNI‐CN, n = 15). We achieved an overall dice similarity coefficient (DSC) of 0.81 on the HKU‐SVD testing set (n = 20), DSC = 0.77 on the HKU‐MS testing set (n = 5), and DSC = 0.78 on MICCAI‐WMH testing set (n = 30). The segmentation results obtained by our semisupervised V‐Net were comparable with the supervised methods and outperformed the unsupervised methods in the literature.
This article presented a study of training a white matter hyperintensity segmentation network on T2‐weighted fluid‐attenuated inversion recovery images without using manual labeled data. The segmentation performance outperform than other semisupervised and unsupervised methods. |
doi_str_mv | 10.1002/hbm.26109 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9921214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2775210561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4439-40ee026665c8854d7478e9b78f1b28e9d6e3c14bf1ab9bce3dce9bd013e8cfe03</originalsourceid><addsrcrecordid>eNp1kV1LHDEUhoO0dK164R-Qgd7oxaw5mUxmciNVsXVBKdh6HebjzG5kPrZJZmX_fY_udqlCISSHnIeX856XsWPgU-BcnC_KbioUcL3H9unOYg46-fBSqzTWMoMJ--z9E-cAKYdPbJIoAVIA32dff2Jn_bhEt7Ie6-h5YQNGXRECumixpn_bB-y9DRZ95HHeYR-KYIc-onP_MDtkH5ui9Xi0fQ_Y47ebX9e38d2P77Pry7u4kjLRseSIXCil0irPU1lnMstRl1neQCmoqhUmFciygaLUZYVJXVG75pBgXjXIkwN2sdFdjmWH1O2DK1qzdLYr3NoMhTVvO71dmPmwMloLILckcLoVcMPvEX0wZLzCti16HEZvRCYSmQutckK_vEOfhtH1ZI-oLKXFpQqIOttQlRu8d9jshgFuXnIxlIt5zYXYk3-n35F_gyDgfAM82xbX_1cyt1f3G8k_9_mYSw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2775210561</pqid></control><display><type>article</type><title>Semisupervised white matter hyperintensities segmentation on MRI</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Huang, Fan ; Xia, Peng ; Vardhanabhuti, Varut ; Hui, Sai‐Kam ; Lau, Kui‐Kai ; Ka‐Fung Mak, Henry ; Cao, Peng</creator><creatorcontrib>Huang, Fan ; Xia, Peng ; Vardhanabhuti, Varut ; Hui, Sai‐Kam ; Lau, Kui‐Kai ; Ka‐Fung Mak, Henry ; Cao, Peng</creatorcontrib><description>This study proposed a semisupervised loss function named level‐set loss (LSLoss) for cerebral white matter hyperintensities (WMHs) segmentation on fluid‐attenuated inversion recovery images. The training procedure did not require manually labeled WMH masks. Our image preprocessing steps included biased field correction, skull stripping, and white matter segmentation. With the proposed LSLoss, we trained a V‐Net using the MRI images from both local and public databases. Local databases were the small vessel disease cohort (HKU‐SVD, n = 360) and the multiple sclerosis cohort (HKU‐MS, n = 20) from our institutional imaging center. Public databases were the Medical Image Computing Computer‐assisted Intervention (MICCAI) WMH challenge database (MICCAI‐WMH, n = 60) and the normal control cohort of the Alzheimer's Disease Neuroimaging Initiative database (ADNI‐CN, n = 15). We achieved an overall dice similarity coefficient (DSC) of 0.81 on the HKU‐SVD testing set (n = 20), DSC = 0.77 on the HKU‐MS testing set (n = 5), and DSC = 0.78 on MICCAI‐WMH testing set (n = 30). The segmentation results obtained by our semisupervised V‐Net were comparable with the supervised methods and outperformed the unsupervised methods in the literature.
This article presented a study of training a white matter hyperintensity segmentation network on T2‐weighted fluid‐attenuated inversion recovery images without using manual labeled data. The segmentation performance outperform than other semisupervised and unsupervised methods.</description><identifier>ISSN: 1065-9471</identifier><identifier>ISSN: 1097-0193</identifier><identifier>EISSN: 1097-0193</identifier><identifier>DOI: 10.1002/hbm.26109</identifier><identifier>PMID: 36214210</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Alzheimer Disease ; Alzheimer's disease ; Brain - diagnostic imaging ; brain MRI ; convolutional neural networks ; Datasets ; Deep learning ; Humans ; Image processing ; Image Processing, Computer-Assisted - methods ; Image segmentation ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Medical imaging ; Multiple sclerosis ; Neural networks ; Neurodegenerative diseases ; Neuroimaging ; Patients ; Scanners ; segmentation ; semisupervised learning ; Skull ; small vessel diseases ; Stroke ; Substantia alba ; White Matter - diagnostic imaging ; white matter hyperintensities</subject><ispartof>Human brain mapping, 2023-03, Vol.44 (4), p.1344-1358</ispartof><rights>2022 The Authors. published by Wiley Periodicals LLC.</rights><rights>2022 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4439-40ee026665c8854d7478e9b78f1b28e9d6e3c14bf1ab9bce3dce9bd013e8cfe03</citedby><cites>FETCH-LOGICAL-c4439-40ee026665c8854d7478e9b78f1b28e9d6e3c14bf1ab9bce3dce9bd013e8cfe03</cites><orcidid>0000-0002-2007-0650 ; 0000-0003-3113-7408 ; 0000-0002-1116-1171</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9921214/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9921214/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1411,11541,27901,27902,45550,45551,46027,46451,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36214210$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Fan</creatorcontrib><creatorcontrib>Xia, Peng</creatorcontrib><creatorcontrib>Vardhanabhuti, Varut</creatorcontrib><creatorcontrib>Hui, Sai‐Kam</creatorcontrib><creatorcontrib>Lau, Kui‐Kai</creatorcontrib><creatorcontrib>Ka‐Fung Mak, Henry</creatorcontrib><creatorcontrib>Cao, Peng</creatorcontrib><title>Semisupervised white matter hyperintensities segmentation on MRI</title><title>Human brain mapping</title><addtitle>Hum Brain Mapp</addtitle><description>This study proposed a semisupervised loss function named level‐set loss (LSLoss) for cerebral white matter hyperintensities (WMHs) segmentation on fluid‐attenuated inversion recovery images. The training procedure did not require manually labeled WMH masks. Our image preprocessing steps included biased field correction, skull stripping, and white matter segmentation. With the proposed LSLoss, we trained a V‐Net using the MRI images from both local and public databases. Local databases were the small vessel disease cohort (HKU‐SVD, n = 360) and the multiple sclerosis cohort (HKU‐MS, n = 20) from our institutional imaging center. Public databases were the Medical Image Computing Computer‐assisted Intervention (MICCAI) WMH challenge database (MICCAI‐WMH, n = 60) and the normal control cohort of the Alzheimer's Disease Neuroimaging Initiative database (ADNI‐CN, n = 15). We achieved an overall dice similarity coefficient (DSC) of 0.81 on the HKU‐SVD testing set (n = 20), DSC = 0.77 on the HKU‐MS testing set (n = 5), and DSC = 0.78 on MICCAI‐WMH testing set (n = 30). The segmentation results obtained by our semisupervised V‐Net were comparable with the supervised methods and outperformed the unsupervised methods in the literature.
This article presented a study of training a white matter hyperintensity segmentation network on T2‐weighted fluid‐attenuated inversion recovery images without using manual labeled data. The segmentation performance outperform than other semisupervised and unsupervised methods.</description><subject>Alzheimer Disease</subject><subject>Alzheimer's disease</subject><subject>Brain - diagnostic imaging</subject><subject>brain MRI</subject><subject>convolutional neural networks</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Humans</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image segmentation</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Medical imaging</subject><subject>Multiple sclerosis</subject><subject>Neural networks</subject><subject>Neurodegenerative diseases</subject><subject>Neuroimaging</subject><subject>Patients</subject><subject>Scanners</subject><subject>segmentation</subject><subject>semisupervised learning</subject><subject>Skull</subject><subject>small vessel diseases</subject><subject>Stroke</subject><subject>Substantia alba</subject><subject>White Matter - diagnostic imaging</subject><subject>white matter hyperintensities</subject><issn>1065-9471</issn><issn>1097-0193</issn><issn>1097-0193</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNp1kV1LHDEUhoO0dK164R-Qgd7oxaw5mUxmciNVsXVBKdh6HebjzG5kPrZJZmX_fY_udqlCISSHnIeX856XsWPgU-BcnC_KbioUcL3H9unOYg46-fBSqzTWMoMJ--z9E-cAKYdPbJIoAVIA32dff2Jn_bhEt7Ie6-h5YQNGXRECumixpn_bB-y9DRZ95HHeYR-KYIc-onP_MDtkH5ui9Xi0fQ_Y47ebX9e38d2P77Pry7u4kjLRseSIXCil0irPU1lnMstRl1neQCmoqhUmFciygaLUZYVJXVG75pBgXjXIkwN2sdFdjmWH1O2DK1qzdLYr3NoMhTVvO71dmPmwMloLILckcLoVcMPvEX0wZLzCti16HEZvRCYSmQutckK_vEOfhtH1ZI-oLKXFpQqIOttQlRu8d9jshgFuXnIxlIt5zYXYk3-n35F_gyDgfAM82xbX_1cyt1f3G8k_9_mYSw</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Huang, Fan</creator><creator>Xia, Peng</creator><creator>Vardhanabhuti, Varut</creator><creator>Hui, Sai‐Kam</creator><creator>Lau, Kui‐Kai</creator><creator>Ka‐Fung Mak, Henry</creator><creator>Cao, Peng</creator><general>John Wiley & Sons, Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2007-0650</orcidid><orcidid>https://orcid.org/0000-0003-3113-7408</orcidid><orcidid>https://orcid.org/0000-0002-1116-1171</orcidid></search><sort><creationdate>202303</creationdate><title>Semisupervised white matter hyperintensities segmentation on MRI</title><author>Huang, Fan ; Xia, Peng ; Vardhanabhuti, Varut ; Hui, Sai‐Kam ; Lau, Kui‐Kai ; Ka‐Fung Mak, Henry ; Cao, Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4439-40ee026665c8854d7478e9b78f1b28e9d6e3c14bf1ab9bce3dce9bd013e8cfe03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alzheimer Disease</topic><topic>Alzheimer's disease</topic><topic>Brain - diagnostic imaging</topic><topic>brain MRI</topic><topic>convolutional neural networks</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Humans</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image segmentation</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Medical imaging</topic><topic>Multiple sclerosis</topic><topic>Neural networks</topic><topic>Neurodegenerative diseases</topic><topic>Neuroimaging</topic><topic>Patients</topic><topic>Scanners</topic><topic>segmentation</topic><topic>semisupervised learning</topic><topic>Skull</topic><topic>small vessel diseases</topic><topic>Stroke</topic><topic>Substantia alba</topic><topic>White Matter - diagnostic imaging</topic><topic>white matter hyperintensities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Fan</creatorcontrib><creatorcontrib>Xia, Peng</creatorcontrib><creatorcontrib>Vardhanabhuti, Varut</creatorcontrib><creatorcontrib>Hui, Sai‐Kam</creatorcontrib><creatorcontrib>Lau, Kui‐Kai</creatorcontrib><creatorcontrib>Ka‐Fung Mak, Henry</creatorcontrib><creatorcontrib>Cao, Peng</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human brain mapping</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Fan</au><au>Xia, Peng</au><au>Vardhanabhuti, Varut</au><au>Hui, Sai‐Kam</au><au>Lau, Kui‐Kai</au><au>Ka‐Fung Mak, Henry</au><au>Cao, Peng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semisupervised white matter hyperintensities segmentation on MRI</atitle><jtitle>Human brain mapping</jtitle><addtitle>Hum Brain Mapp</addtitle><date>2023-03</date><risdate>2023</risdate><volume>44</volume><issue>4</issue><spage>1344</spage><epage>1358</epage><pages>1344-1358</pages><issn>1065-9471</issn><issn>1097-0193</issn><eissn>1097-0193</eissn><abstract>This study proposed a semisupervised loss function named level‐set loss (LSLoss) for cerebral white matter hyperintensities (WMHs) segmentation on fluid‐attenuated inversion recovery images. The training procedure did not require manually labeled WMH masks. Our image preprocessing steps included biased field correction, skull stripping, and white matter segmentation. With the proposed LSLoss, we trained a V‐Net using the MRI images from both local and public databases. Local databases were the small vessel disease cohort (HKU‐SVD, n = 360) and the multiple sclerosis cohort (HKU‐MS, n = 20) from our institutional imaging center. Public databases were the Medical Image Computing Computer‐assisted Intervention (MICCAI) WMH challenge database (MICCAI‐WMH, n = 60) and the normal control cohort of the Alzheimer's Disease Neuroimaging Initiative database (ADNI‐CN, n = 15). We achieved an overall dice similarity coefficient (DSC) of 0.81 on the HKU‐SVD testing set (n = 20), DSC = 0.77 on the HKU‐MS testing set (n = 5), and DSC = 0.78 on MICCAI‐WMH testing set (n = 30). The segmentation results obtained by our semisupervised V‐Net were comparable with the supervised methods and outperformed the unsupervised methods in the literature.
This article presented a study of training a white matter hyperintensity segmentation network on T2‐weighted fluid‐attenuated inversion recovery images without using manual labeled data. The segmentation performance outperform than other semisupervised and unsupervised methods.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>36214210</pmid><doi>10.1002/hbm.26109</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-2007-0650</orcidid><orcidid>https://orcid.org/0000-0003-3113-7408</orcidid><orcidid>https://orcid.org/0000-0002-1116-1171</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1065-9471 |
ispartof | Human brain mapping, 2023-03, Vol.44 (4), p.1344-1358 |
issn | 1065-9471 1097-0193 1097-0193 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9921214 |
source | MEDLINE; Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Alzheimer Disease Alzheimer's disease Brain - diagnostic imaging brain MRI convolutional neural networks Datasets Deep learning Humans Image processing Image Processing, Computer-Assisted - methods Image segmentation Magnetic resonance imaging Magnetic Resonance Imaging - methods Medical imaging Multiple sclerosis Neural networks Neurodegenerative diseases Neuroimaging Patients Scanners segmentation semisupervised learning Skull small vessel diseases Stroke Substantia alba White Matter - diagnostic imaging white matter hyperintensities |
title | Semisupervised white matter hyperintensities segmentation on MRI |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A31%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semisupervised%20white%20matter%20hyperintensities%20segmentation%20on%20MRI&rft.jtitle=Human%20brain%20mapping&rft.au=Huang,%20Fan&rft.date=2023-03&rft.volume=44&rft.issue=4&rft.spage=1344&rft.epage=1358&rft.pages=1344-1358&rft.issn=1065-9471&rft.eissn=1097-0193&rft_id=info:doi/10.1002/hbm.26109&rft_dat=%3Cproquest_pubme%3E2775210561%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2775210561&rft_id=info:pmid/36214210&rfr_iscdi=true |