Semisupervised white matter hyperintensities segmentation on MRI

This study proposed a semisupervised loss function named level‐set loss (LSLoss) for cerebral white matter hyperintensities (WMHs) segmentation on fluid‐attenuated inversion recovery images. The training procedure did not require manually labeled WMH masks. Our image preprocessing steps included bia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human brain mapping 2023-03, Vol.44 (4), p.1344-1358
Hauptverfasser: Huang, Fan, Xia, Peng, Vardhanabhuti, Varut, Hui, Sai‐Kam, Lau, Kui‐Kai, Ka‐Fung Mak, Henry, Cao, Peng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1358
container_issue 4
container_start_page 1344
container_title Human brain mapping
container_volume 44
creator Huang, Fan
Xia, Peng
Vardhanabhuti, Varut
Hui, Sai‐Kam
Lau, Kui‐Kai
Ka‐Fung Mak, Henry
Cao, Peng
description This study proposed a semisupervised loss function named level‐set loss (LSLoss) for cerebral white matter hyperintensities (WMHs) segmentation on fluid‐attenuated inversion recovery images. The training procedure did not require manually labeled WMH masks. Our image preprocessing steps included biased field correction, skull stripping, and white matter segmentation. With the proposed LSLoss, we trained a V‐Net using the MRI images from both local and public databases. Local databases were the small vessel disease cohort (HKU‐SVD, n = 360) and the multiple sclerosis cohort (HKU‐MS, n = 20) from our institutional imaging center. Public databases were the Medical Image Computing Computer‐assisted Intervention (MICCAI) WMH challenge database (MICCAI‐WMH, n = 60) and the normal control cohort of the Alzheimer's Disease Neuroimaging Initiative database (ADNI‐CN, n = 15). We achieved an overall dice similarity coefficient (DSC) of 0.81 on the HKU‐SVD testing set (n = 20), DSC = 0.77 on the HKU‐MS testing set (n = 5), and DSC = 0.78 on MICCAI‐WMH testing set (n = 30). The segmentation results obtained by our semisupervised V‐Net were comparable with the supervised methods and outperformed the unsupervised methods in the literature. This article presented a study of training a white matter hyperintensity segmentation network on T2‐weighted fluid‐attenuated inversion recovery images without using manual labeled data. The segmentation performance outperform than other semisupervised and unsupervised methods.
doi_str_mv 10.1002/hbm.26109
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9921214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2775210561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4439-40ee026665c8854d7478e9b78f1b28e9d6e3c14bf1ab9bce3dce9bd013e8cfe03</originalsourceid><addsrcrecordid>eNp1kV1LHDEUhoO0dK164R-Qgd7oxaw5mUxmciNVsXVBKdh6HebjzG5kPrZJZmX_fY_udqlCISSHnIeX856XsWPgU-BcnC_KbioUcL3H9unOYg46-fBSqzTWMoMJ--z9E-cAKYdPbJIoAVIA32dff2Jn_bhEt7Ie6-h5YQNGXRECumixpn_bB-y9DRZ95HHeYR-KYIc-onP_MDtkH5ui9Xi0fQ_Y47ebX9e38d2P77Pry7u4kjLRseSIXCil0irPU1lnMstRl1neQCmoqhUmFciygaLUZYVJXVG75pBgXjXIkwN2sdFdjmWH1O2DK1qzdLYr3NoMhTVvO71dmPmwMloLILckcLoVcMPvEX0wZLzCti16HEZvRCYSmQutckK_vEOfhtH1ZI-oLKXFpQqIOttQlRu8d9jshgFuXnIxlIt5zYXYk3-n35F_gyDgfAM82xbX_1cyt1f3G8k_9_mYSw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2775210561</pqid></control><display><type>article</type><title>Semisupervised white matter hyperintensities segmentation on MRI</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Huang, Fan ; Xia, Peng ; Vardhanabhuti, Varut ; Hui, Sai‐Kam ; Lau, Kui‐Kai ; Ka‐Fung Mak, Henry ; Cao, Peng</creator><creatorcontrib>Huang, Fan ; Xia, Peng ; Vardhanabhuti, Varut ; Hui, Sai‐Kam ; Lau, Kui‐Kai ; Ka‐Fung Mak, Henry ; Cao, Peng</creatorcontrib><description>This study proposed a semisupervised loss function named level‐set loss (LSLoss) for cerebral white matter hyperintensities (WMHs) segmentation on fluid‐attenuated inversion recovery images. The training procedure did not require manually labeled WMH masks. Our image preprocessing steps included biased field correction, skull stripping, and white matter segmentation. With the proposed LSLoss, we trained a V‐Net using the MRI images from both local and public databases. Local databases were the small vessel disease cohort (HKU‐SVD, n = 360) and the multiple sclerosis cohort (HKU‐MS, n = 20) from our institutional imaging center. Public databases were the Medical Image Computing Computer‐assisted Intervention (MICCAI) WMH challenge database (MICCAI‐WMH, n = 60) and the normal control cohort of the Alzheimer's Disease Neuroimaging Initiative database (ADNI‐CN, n = 15). We achieved an overall dice similarity coefficient (DSC) of 0.81 on the HKU‐SVD testing set (n = 20), DSC = 0.77 on the HKU‐MS testing set (n = 5), and DSC = 0.78 on MICCAI‐WMH testing set (n = 30). The segmentation results obtained by our semisupervised V‐Net were comparable with the supervised methods and outperformed the unsupervised methods in the literature. This article presented a study of training a white matter hyperintensity segmentation network on T2‐weighted fluid‐attenuated inversion recovery images without using manual labeled data. The segmentation performance outperform than other semisupervised and unsupervised methods.</description><identifier>ISSN: 1065-9471</identifier><identifier>ISSN: 1097-0193</identifier><identifier>EISSN: 1097-0193</identifier><identifier>DOI: 10.1002/hbm.26109</identifier><identifier>PMID: 36214210</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Alzheimer Disease ; Alzheimer's disease ; Brain - diagnostic imaging ; brain MRI ; convolutional neural networks ; Datasets ; Deep learning ; Humans ; Image processing ; Image Processing, Computer-Assisted - methods ; Image segmentation ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Medical imaging ; Multiple sclerosis ; Neural networks ; Neurodegenerative diseases ; Neuroimaging ; Patients ; Scanners ; segmentation ; semisupervised learning ; Skull ; small vessel diseases ; Stroke ; Substantia alba ; White Matter - diagnostic imaging ; white matter hyperintensities</subject><ispartof>Human brain mapping, 2023-03, Vol.44 (4), p.1344-1358</ispartof><rights>2022 The Authors. published by Wiley Periodicals LLC.</rights><rights>2022 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4439-40ee026665c8854d7478e9b78f1b28e9d6e3c14bf1ab9bce3dce9bd013e8cfe03</citedby><cites>FETCH-LOGICAL-c4439-40ee026665c8854d7478e9b78f1b28e9d6e3c14bf1ab9bce3dce9bd013e8cfe03</cites><orcidid>0000-0002-2007-0650 ; 0000-0003-3113-7408 ; 0000-0002-1116-1171</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9921214/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9921214/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1411,11541,27901,27902,45550,45551,46027,46451,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36214210$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Fan</creatorcontrib><creatorcontrib>Xia, Peng</creatorcontrib><creatorcontrib>Vardhanabhuti, Varut</creatorcontrib><creatorcontrib>Hui, Sai‐Kam</creatorcontrib><creatorcontrib>Lau, Kui‐Kai</creatorcontrib><creatorcontrib>Ka‐Fung Mak, Henry</creatorcontrib><creatorcontrib>Cao, Peng</creatorcontrib><title>Semisupervised white matter hyperintensities segmentation on MRI</title><title>Human brain mapping</title><addtitle>Hum Brain Mapp</addtitle><description>This study proposed a semisupervised loss function named level‐set loss (LSLoss) for cerebral white matter hyperintensities (WMHs) segmentation on fluid‐attenuated inversion recovery images. The training procedure did not require manually labeled WMH masks. Our image preprocessing steps included biased field correction, skull stripping, and white matter segmentation. With the proposed LSLoss, we trained a V‐Net using the MRI images from both local and public databases. Local databases were the small vessel disease cohort (HKU‐SVD, n = 360) and the multiple sclerosis cohort (HKU‐MS, n = 20) from our institutional imaging center. Public databases were the Medical Image Computing Computer‐assisted Intervention (MICCAI) WMH challenge database (MICCAI‐WMH, n = 60) and the normal control cohort of the Alzheimer's Disease Neuroimaging Initiative database (ADNI‐CN, n = 15). We achieved an overall dice similarity coefficient (DSC) of 0.81 on the HKU‐SVD testing set (n = 20), DSC = 0.77 on the HKU‐MS testing set (n = 5), and DSC = 0.78 on MICCAI‐WMH testing set (n = 30). The segmentation results obtained by our semisupervised V‐Net were comparable with the supervised methods and outperformed the unsupervised methods in the literature. This article presented a study of training a white matter hyperintensity segmentation network on T2‐weighted fluid‐attenuated inversion recovery images without using manual labeled data. The segmentation performance outperform than other semisupervised and unsupervised methods.</description><subject>Alzheimer Disease</subject><subject>Alzheimer's disease</subject><subject>Brain - diagnostic imaging</subject><subject>brain MRI</subject><subject>convolutional neural networks</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Humans</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image segmentation</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Medical imaging</subject><subject>Multiple sclerosis</subject><subject>Neural networks</subject><subject>Neurodegenerative diseases</subject><subject>Neuroimaging</subject><subject>Patients</subject><subject>Scanners</subject><subject>segmentation</subject><subject>semisupervised learning</subject><subject>Skull</subject><subject>small vessel diseases</subject><subject>Stroke</subject><subject>Substantia alba</subject><subject>White Matter - diagnostic imaging</subject><subject>white matter hyperintensities</subject><issn>1065-9471</issn><issn>1097-0193</issn><issn>1097-0193</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNp1kV1LHDEUhoO0dK164R-Qgd7oxaw5mUxmciNVsXVBKdh6HebjzG5kPrZJZmX_fY_udqlCISSHnIeX856XsWPgU-BcnC_KbioUcL3H9unOYg46-fBSqzTWMoMJ--z9E-cAKYdPbJIoAVIA32dff2Jn_bhEt7Ie6-h5YQNGXRECumixpn_bB-y9DRZ95HHeYR-KYIc-onP_MDtkH5ui9Xi0fQ_Y47ebX9e38d2P77Pry7u4kjLRseSIXCil0irPU1lnMstRl1neQCmoqhUmFciygaLUZYVJXVG75pBgXjXIkwN2sdFdjmWH1O2DK1qzdLYr3NoMhTVvO71dmPmwMloLILckcLoVcMPvEX0wZLzCti16HEZvRCYSmQutckK_vEOfhtH1ZI-oLKXFpQqIOttQlRu8d9jshgFuXnIxlIt5zYXYk3-n35F_gyDgfAM82xbX_1cyt1f3G8k_9_mYSw</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Huang, Fan</creator><creator>Xia, Peng</creator><creator>Vardhanabhuti, Varut</creator><creator>Hui, Sai‐Kam</creator><creator>Lau, Kui‐Kai</creator><creator>Ka‐Fung Mak, Henry</creator><creator>Cao, Peng</creator><general>John Wiley &amp; Sons, Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2007-0650</orcidid><orcidid>https://orcid.org/0000-0003-3113-7408</orcidid><orcidid>https://orcid.org/0000-0002-1116-1171</orcidid></search><sort><creationdate>202303</creationdate><title>Semisupervised white matter hyperintensities segmentation on MRI</title><author>Huang, Fan ; Xia, Peng ; Vardhanabhuti, Varut ; Hui, Sai‐Kam ; Lau, Kui‐Kai ; Ka‐Fung Mak, Henry ; Cao, Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4439-40ee026665c8854d7478e9b78f1b28e9d6e3c14bf1ab9bce3dce9bd013e8cfe03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alzheimer Disease</topic><topic>Alzheimer's disease</topic><topic>Brain - diagnostic imaging</topic><topic>brain MRI</topic><topic>convolutional neural networks</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Humans</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image segmentation</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Medical imaging</topic><topic>Multiple sclerosis</topic><topic>Neural networks</topic><topic>Neurodegenerative diseases</topic><topic>Neuroimaging</topic><topic>Patients</topic><topic>Scanners</topic><topic>segmentation</topic><topic>semisupervised learning</topic><topic>Skull</topic><topic>small vessel diseases</topic><topic>Stroke</topic><topic>Substantia alba</topic><topic>White Matter - diagnostic imaging</topic><topic>white matter hyperintensities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Fan</creatorcontrib><creatorcontrib>Xia, Peng</creatorcontrib><creatorcontrib>Vardhanabhuti, Varut</creatorcontrib><creatorcontrib>Hui, Sai‐Kam</creatorcontrib><creatorcontrib>Lau, Kui‐Kai</creatorcontrib><creatorcontrib>Ka‐Fung Mak, Henry</creatorcontrib><creatorcontrib>Cao, Peng</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human brain mapping</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Fan</au><au>Xia, Peng</au><au>Vardhanabhuti, Varut</au><au>Hui, Sai‐Kam</au><au>Lau, Kui‐Kai</au><au>Ka‐Fung Mak, Henry</au><au>Cao, Peng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semisupervised white matter hyperintensities segmentation on MRI</atitle><jtitle>Human brain mapping</jtitle><addtitle>Hum Brain Mapp</addtitle><date>2023-03</date><risdate>2023</risdate><volume>44</volume><issue>4</issue><spage>1344</spage><epage>1358</epage><pages>1344-1358</pages><issn>1065-9471</issn><issn>1097-0193</issn><eissn>1097-0193</eissn><abstract>This study proposed a semisupervised loss function named level‐set loss (LSLoss) for cerebral white matter hyperintensities (WMHs) segmentation on fluid‐attenuated inversion recovery images. The training procedure did not require manually labeled WMH masks. Our image preprocessing steps included biased field correction, skull stripping, and white matter segmentation. With the proposed LSLoss, we trained a V‐Net using the MRI images from both local and public databases. Local databases were the small vessel disease cohort (HKU‐SVD, n = 360) and the multiple sclerosis cohort (HKU‐MS, n = 20) from our institutional imaging center. Public databases were the Medical Image Computing Computer‐assisted Intervention (MICCAI) WMH challenge database (MICCAI‐WMH, n = 60) and the normal control cohort of the Alzheimer's Disease Neuroimaging Initiative database (ADNI‐CN, n = 15). We achieved an overall dice similarity coefficient (DSC) of 0.81 on the HKU‐SVD testing set (n = 20), DSC = 0.77 on the HKU‐MS testing set (n = 5), and DSC = 0.78 on MICCAI‐WMH testing set (n = 30). The segmentation results obtained by our semisupervised V‐Net were comparable with the supervised methods and outperformed the unsupervised methods in the literature. This article presented a study of training a white matter hyperintensity segmentation network on T2‐weighted fluid‐attenuated inversion recovery images without using manual labeled data. The segmentation performance outperform than other semisupervised and unsupervised methods.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>36214210</pmid><doi>10.1002/hbm.26109</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-2007-0650</orcidid><orcidid>https://orcid.org/0000-0003-3113-7408</orcidid><orcidid>https://orcid.org/0000-0002-1116-1171</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1065-9471
ispartof Human brain mapping, 2023-03, Vol.44 (4), p.1344-1358
issn 1065-9471
1097-0193
1097-0193
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9921214
source MEDLINE; Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Alzheimer Disease
Alzheimer's disease
Brain - diagnostic imaging
brain MRI
convolutional neural networks
Datasets
Deep learning
Humans
Image processing
Image Processing, Computer-Assisted - methods
Image segmentation
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Medical imaging
Multiple sclerosis
Neural networks
Neurodegenerative diseases
Neuroimaging
Patients
Scanners
segmentation
semisupervised learning
Skull
small vessel diseases
Stroke
Substantia alba
White Matter - diagnostic imaging
white matter hyperintensities
title Semisupervised white matter hyperintensities segmentation on MRI
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A31%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semisupervised%20white%20matter%20hyperintensities%20segmentation%20on%20MRI&rft.jtitle=Human%20brain%20mapping&rft.au=Huang,%20Fan&rft.date=2023-03&rft.volume=44&rft.issue=4&rft.spage=1344&rft.epage=1358&rft.pages=1344-1358&rft.issn=1065-9471&rft.eissn=1097-0193&rft_id=info:doi/10.1002/hbm.26109&rft_dat=%3Cproquest_pubme%3E2775210561%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2775210561&rft_id=info:pmid/36214210&rfr_iscdi=true