Semisupervised white matter hyperintensities segmentation on MRI

This study proposed a semisupervised loss function named level‐set loss (LSLoss) for cerebral white matter hyperintensities (WMHs) segmentation on fluid‐attenuated inversion recovery images. The training procedure did not require manually labeled WMH masks. Our image preprocessing steps included bia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human brain mapping 2023-03, Vol.44 (4), p.1344-1358
Hauptverfasser: Huang, Fan, Xia, Peng, Vardhanabhuti, Varut, Hui, Sai‐Kam, Lau, Kui‐Kai, Ka‐Fung Mak, Henry, Cao, Peng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study proposed a semisupervised loss function named level‐set loss (LSLoss) for cerebral white matter hyperintensities (WMHs) segmentation on fluid‐attenuated inversion recovery images. The training procedure did not require manually labeled WMH masks. Our image preprocessing steps included biased field correction, skull stripping, and white matter segmentation. With the proposed LSLoss, we trained a V‐Net using the MRI images from both local and public databases. Local databases were the small vessel disease cohort (HKU‐SVD, n = 360) and the multiple sclerosis cohort (HKU‐MS, n = 20) from our institutional imaging center. Public databases were the Medical Image Computing Computer‐assisted Intervention (MICCAI) WMH challenge database (MICCAI‐WMH, n = 60) and the normal control cohort of the Alzheimer's Disease Neuroimaging Initiative database (ADNI‐CN, n = 15). We achieved an overall dice similarity coefficient (DSC) of 0.81 on the HKU‐SVD testing set (n = 20), DSC = 0.77 on the HKU‐MS testing set (n = 5), and DSC = 0.78 on MICCAI‐WMH testing set (n = 30). The segmentation results obtained by our semisupervised V‐Net were comparable with the supervised methods and outperformed the unsupervised methods in the literature. This article presented a study of training a white matter hyperintensity segmentation network on T2‐weighted fluid‐attenuated inversion recovery images without using manual labeled data. The segmentation performance outperform than other semisupervised and unsupervised methods.
ISSN:1065-9471
1097-0193
1097-0193
DOI:10.1002/hbm.26109