Dielectric Spectroscopy of Calcium Titanate Processed by Spark Plasma Sintering

Calcium titanate (CaTiO ) powder was compacted by spark plasma sintering (SPS). The resulting products were subjected to the phase stability study and dielectric characterization. The change in temperature of SPS between 1100 °C and 1250 °C had a clear and straightforward effect on density, porosity...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2023-01, Vol.16 (3), p.975
Hauptverfasser: Ctibor, Pavel, Sedláček, Josef, Straka, Libor, Lukáč, František, Neufuss, Karel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Calcium titanate (CaTiO ) powder was compacted by spark plasma sintering (SPS). The resulting products were subjected to the phase stability study and dielectric characterization. The change in temperature of SPS between 1100 °C and 1250 °C had a clear and straightforward effect on density, porosity, relative permittivity, loss tangent, and DC resistivity. Since the SPS itself introduces certain oxygen deficiency into Ti-perovskites, all samples were annealed after SPS. However, this post-processing did not mask the effects of the SPS regime. Optical reflectance measurements were completed to compare and quantify the sample coloration and support the dielectric results with corresponding optical band gap estimations. Subtle changes in the CaTiO crystal lattice arrangement, completed between 1150 °C and 1250 °C and documented in the literature for conventionally sintered samples, could not be confirmed for SPS-prepared calcium titanate. The novelty of this research work is in producing very stable dielectric ceramics and an indication of the SPS processing parameters suitable for this. The best sample showed at 1 MHz frequency the combination of relative permittivity 370, loss tangent 0.008, and DC resistivity 3 × 10 Ωm.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma16030975