Definition and Characterization of SOX11-Derived T Cell Epitopes towards Immunotherapy of Glioma
The transcription factor SOX11 is a tumor-associated antigen with low expression in normal cells, but overexpression in glioblastoma (GBM). So far, conventional surgery, chemotherapy, and radiotherapy have not substantially improved the dismal prognosis of relapsed/refractory GBM patients. Immunothe...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2023-01, Vol.24 (3), p.1943 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The transcription factor SOX11 is a tumor-associated antigen with low expression in normal cells, but overexpression in glioblastoma (GBM). So far, conventional surgery, chemotherapy, and radiotherapy have not substantially improved the dismal prognosis of relapsed/refractory GBM patients. Immunotherapy is considered a promising strategy against GBM, but there is a fervent need for better immunotargets in GBM. To this end, we performed an in silico prediction study on SOX11, which primarily yielded ten promising HLA-A*0201-restricted peptides derived from SOX11. We defined a novel peptide FMACSPVAL, which had the highest score according to in silico prediction (6.02 nM by NetMHC-4.0) and showed an exquisite binding affinity to the HLA-A*0201 molecule in the peptide-binding assays. In the IFN-γ ELISPOT assays, FMACSPVAL demonstrated a high efficiency for generating SOX11-specific CD8
T cells. Nine out of thirty-two healthy donors showed a positive response to SOX11, as assessed by the ELISPOT assays. Therefore, this novel antigen peptide epitope seems to be promising as a target for T cell-based immunotherapy in GBM. The adoptive transfer of in vitro elicited SOX11-specific CD8
T cells constitutes a potential approach for the treatment of GBM patients. |
---|---|
ISSN: | 1422-0067 1661-6596 1422-0067 |
DOI: | 10.3390/ijms24031943 |