Removal of Hexavalent Chromium in Aqueous Solution by Cellulose Filter Paper Loaded with Nano-Zero-Valent Iron: Performance Investigation and Numerical Modeling
Cr(VI) pollution in water bodies is very harmful to human health and the environment. Therefore, it is necessary to remove Cr(VI) from water. In this study, the composite (FP-nZVI) was prepared by loading nano-zero-valent iron (nZVI) onto cellulose filter paper (FP) using a liquid-phase reduction me...
Gespeichert in:
Veröffentlicht in: | International journal of environmental research and public health 2023-01, Vol.20 (3), p.1867 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 1867 |
container_title | International journal of environmental research and public health |
container_volume | 20 |
creator | Li, Huali Ren, Zhongyu Huang, Dan Jing, Qi Tang, Haokai |
description | Cr(VI) pollution in water bodies is very harmful to human health and the environment. Therefore, it is necessary to remove Cr(VI) from water. In this study, the composite (FP-nZVI) was prepared by loading nano-zero-valent iron (nZVI) onto cellulose filter paper (FP) using a liquid-phase reduction method to improve the dispersibility and oxidation resistance of nZVI. In batch experiments, the effects of iron loading of FP-nZVI, initial concentration of Cr(VI), temperature, and pH on Cr(VI) removal were particularly investigated. The maximum removal rate of 98.6% was achieved at 25 °C, pH = 5, initial concentration of Cr(VI) of 20 mg/L, and FeCl
·6H
O solution concentration of 0.8 mol/L. The removal of Cr(VI) by FP-nZVI conformed to a pseudo-second-order kinetic model and Langmuir isotherm model. The mechanism of Cr(VI) removal was a multi-step removal mechanism, involving adsorption, reduction, and coprecipitation. Column experiments investigated the effect of flow rate (1 mL/min, 3 mL/min, and 5 mL/min) on Cr(VI) removal. We found that increasing flow rate slightly decreased the removal rate of Cr(VI). The transport of Cr(VI) in composite porous media was simulated using HYDRUS-1D, and the results show that the two-site model can well simulate the reactive transport of Cr(VI). This study may provide a useful reference for the remediation of groundwater contaminated with Cr(VI) or other similar heavy metals using FP-nZVI. |
doi_str_mv | 10.3390/ijerph20031867 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9915128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2774893651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3337-46f251bbfc490d836cde5875db8db610dab69065b6cdf13676302702f36f10f13</originalsourceid><addsrcrecordid>eNpdUctu1DAUtRCItgNblsgSGzYpdpzYCQukatTSkYZS8VqwsZz4esajxB7sZNr-DZ9ap1Oqlo195Xt8dB4IvaHkmLGafLAbCNt1TgijFRfP0CHlnGQFJ_T5o_kAHcW4SaCq4PVLdMC44CIvxCH6-w16v1Md9gafw7VKI7gBz9fB93bssXX45M8Ifoz4u-_GwXqHmxs8h64bOx8Bn9lugIAv1TadS680aHxlhzW-UM5nvyH47NeecxG8-4gvIRgfeuVawAu3gzjYlbqjVU7ji7GHYNuk54vX0Fm3eoVeGNVFeH1_z9DPs9Mf8_Ns-fXzYn6yzFrGmEguTV7SpjFtURNdMd5qKCtR6qbSDadEq4bXhJdNWhg6-WckFyQ3jBtK0ssMfdrzbsemB90mxUF1chtsr8KN9MrKpxtn13Lld7KuaUnzKhG8vycIPiUWB9nb2KaclJvik7kQJc8pTXJn6N1_0I0fg0v2JlRR1YyXk6LjPaoNPsYA5kEMJXIqXz4tP314-9jCA_xf2-wWSTWung</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2774893651</pqid></control><display><type>article</type><title>Removal of Hexavalent Chromium in Aqueous Solution by Cellulose Filter Paper Loaded with Nano-Zero-Valent Iron: Performance Investigation and Numerical Modeling</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Li, Huali ; Ren, Zhongyu ; Huang, Dan ; Jing, Qi ; Tang, Haokai</creator><creatorcontrib>Li, Huali ; Ren, Zhongyu ; Huang, Dan ; Jing, Qi ; Tang, Haokai</creatorcontrib><description>Cr(VI) pollution in water bodies is very harmful to human health and the environment. Therefore, it is necessary to remove Cr(VI) from water. In this study, the composite (FP-nZVI) was prepared by loading nano-zero-valent iron (nZVI) onto cellulose filter paper (FP) using a liquid-phase reduction method to improve the dispersibility and oxidation resistance of nZVI. In batch experiments, the effects of iron loading of FP-nZVI, initial concentration of Cr(VI), temperature, and pH on Cr(VI) removal were particularly investigated. The maximum removal rate of 98.6% was achieved at 25 °C, pH = 5, initial concentration of Cr(VI) of 20 mg/L, and FeCl
·6H
O solution concentration of 0.8 mol/L. The removal of Cr(VI) by FP-nZVI conformed to a pseudo-second-order kinetic model and Langmuir isotherm model. The mechanism of Cr(VI) removal was a multi-step removal mechanism, involving adsorption, reduction, and coprecipitation. Column experiments investigated the effect of flow rate (1 mL/min, 3 mL/min, and 5 mL/min) on Cr(VI) removal. We found that increasing flow rate slightly decreased the removal rate of Cr(VI). The transport of Cr(VI) in composite porous media was simulated using HYDRUS-1D, and the results show that the two-site model can well simulate the reactive transport of Cr(VI). This study may provide a useful reference for the remediation of groundwater contaminated with Cr(VI) or other similar heavy metals using FP-nZVI.</description><identifier>ISSN: 1660-4601</identifier><identifier>ISSN: 1661-7827</identifier><identifier>EISSN: 1660-4601</identifier><identifier>DOI: 10.3390/ijerph20031867</identifier><identifier>PMID: 36767247</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Activated carbon ; Adsorption ; Aqueous solutions ; Cellulose ; Chromium ; Chromium - analysis ; Composite materials ; Ethanol ; Ferric chloride ; Filter paper ; Flow velocity ; Fourier transforms ; Groundwater ; Groundwater pollution ; Groundwater treatment ; Heavy metals ; Hexavalent chromium ; Humans ; Investigations ; Iron ; Liquid phases ; Membrane separation ; Methods ; Nanoparticles ; Oxidation ; Oxidation resistance ; Pollutants ; Pollution ; Porous media ; Reagents ; Scanning electron microscopy ; Spectrum analysis ; Water ; Water Pollutants, Chemical - analysis ; Water pollution</subject><ispartof>International journal of environmental research and public health, 2023-01, Vol.20 (3), p.1867</ispartof><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3337-46f251bbfc490d836cde5875db8db610dab69065b6cdf13676302702f36f10f13</citedby><cites>FETCH-LOGICAL-c3337-46f251bbfc490d836cde5875db8db610dab69065b6cdf13676302702f36f10f13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9915128/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9915128/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36767247$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Huali</creatorcontrib><creatorcontrib>Ren, Zhongyu</creatorcontrib><creatorcontrib>Huang, Dan</creatorcontrib><creatorcontrib>Jing, Qi</creatorcontrib><creatorcontrib>Tang, Haokai</creatorcontrib><title>Removal of Hexavalent Chromium in Aqueous Solution by Cellulose Filter Paper Loaded with Nano-Zero-Valent Iron: Performance Investigation and Numerical Modeling</title><title>International journal of environmental research and public health</title><addtitle>Int J Environ Res Public Health</addtitle><description>Cr(VI) pollution in water bodies is very harmful to human health and the environment. Therefore, it is necessary to remove Cr(VI) from water. In this study, the composite (FP-nZVI) was prepared by loading nano-zero-valent iron (nZVI) onto cellulose filter paper (FP) using a liquid-phase reduction method to improve the dispersibility and oxidation resistance of nZVI. In batch experiments, the effects of iron loading of FP-nZVI, initial concentration of Cr(VI), temperature, and pH on Cr(VI) removal were particularly investigated. The maximum removal rate of 98.6% was achieved at 25 °C, pH = 5, initial concentration of Cr(VI) of 20 mg/L, and FeCl
·6H
O solution concentration of 0.8 mol/L. The removal of Cr(VI) by FP-nZVI conformed to a pseudo-second-order kinetic model and Langmuir isotherm model. The mechanism of Cr(VI) removal was a multi-step removal mechanism, involving adsorption, reduction, and coprecipitation. Column experiments investigated the effect of flow rate (1 mL/min, 3 mL/min, and 5 mL/min) on Cr(VI) removal. We found that increasing flow rate slightly decreased the removal rate of Cr(VI). The transport of Cr(VI) in composite porous media was simulated using HYDRUS-1D, and the results show that the two-site model can well simulate the reactive transport of Cr(VI). This study may provide a useful reference for the remediation of groundwater contaminated with Cr(VI) or other similar heavy metals using FP-nZVI.</description><subject>Activated carbon</subject><subject>Adsorption</subject><subject>Aqueous solutions</subject><subject>Cellulose</subject><subject>Chromium</subject><subject>Chromium - analysis</subject><subject>Composite materials</subject><subject>Ethanol</subject><subject>Ferric chloride</subject><subject>Filter paper</subject><subject>Flow velocity</subject><subject>Fourier transforms</subject><subject>Groundwater</subject><subject>Groundwater pollution</subject><subject>Groundwater treatment</subject><subject>Heavy metals</subject><subject>Hexavalent chromium</subject><subject>Humans</subject><subject>Investigations</subject><subject>Iron</subject><subject>Liquid phases</subject><subject>Membrane separation</subject><subject>Methods</subject><subject>Nanoparticles</subject><subject>Oxidation</subject><subject>Oxidation resistance</subject><subject>Pollutants</subject><subject>Pollution</subject><subject>Porous media</subject><subject>Reagents</subject><subject>Scanning electron microscopy</subject><subject>Spectrum analysis</subject><subject>Water</subject><subject>Water Pollutants, Chemical - analysis</subject><subject>Water pollution</subject><issn>1660-4601</issn><issn>1661-7827</issn><issn>1660-4601</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNpdUctu1DAUtRCItgNblsgSGzYpdpzYCQukatTSkYZS8VqwsZz4esajxB7sZNr-DZ9ap1Oqlo195Xt8dB4IvaHkmLGafLAbCNt1TgijFRfP0CHlnGQFJ_T5o_kAHcW4SaCq4PVLdMC44CIvxCH6-w16v1Md9gafw7VKI7gBz9fB93bssXX45M8Ifoz4u-_GwXqHmxs8h64bOx8Bn9lugIAv1TadS680aHxlhzW-UM5nvyH47NeecxG8-4gvIRgfeuVawAu3gzjYlbqjVU7ji7GHYNuk54vX0Fm3eoVeGNVFeH1_z9DPs9Mf8_Ns-fXzYn6yzFrGmEguTV7SpjFtURNdMd5qKCtR6qbSDadEq4bXhJdNWhg6-WckFyQ3jBtK0ssMfdrzbsemB90mxUF1chtsr8KN9MrKpxtn13Lld7KuaUnzKhG8vycIPiUWB9nb2KaclJvik7kQJc8pTXJn6N1_0I0fg0v2JlRR1YyXk6LjPaoNPsYA5kEMJXIqXz4tP314-9jCA_xf2-wWSTWung</recordid><startdate>20230119</startdate><enddate>20230119</enddate><creator>Li, Huali</creator><creator>Ren, Zhongyu</creator><creator>Huang, Dan</creator><creator>Jing, Qi</creator><creator>Tang, Haokai</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20230119</creationdate><title>Removal of Hexavalent Chromium in Aqueous Solution by Cellulose Filter Paper Loaded with Nano-Zero-Valent Iron: Performance Investigation and Numerical Modeling</title><author>Li, Huali ; Ren, Zhongyu ; Huang, Dan ; Jing, Qi ; Tang, Haokai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3337-46f251bbfc490d836cde5875db8db610dab69065b6cdf13676302702f36f10f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Activated carbon</topic><topic>Adsorption</topic><topic>Aqueous solutions</topic><topic>Cellulose</topic><topic>Chromium</topic><topic>Chromium - analysis</topic><topic>Composite materials</topic><topic>Ethanol</topic><topic>Ferric chloride</topic><topic>Filter paper</topic><topic>Flow velocity</topic><topic>Fourier transforms</topic><topic>Groundwater</topic><topic>Groundwater pollution</topic><topic>Groundwater treatment</topic><topic>Heavy metals</topic><topic>Hexavalent chromium</topic><topic>Humans</topic><topic>Investigations</topic><topic>Iron</topic><topic>Liquid phases</topic><topic>Membrane separation</topic><topic>Methods</topic><topic>Nanoparticles</topic><topic>Oxidation</topic><topic>Oxidation resistance</topic><topic>Pollutants</topic><topic>Pollution</topic><topic>Porous media</topic><topic>Reagents</topic><topic>Scanning electron microscopy</topic><topic>Spectrum analysis</topic><topic>Water</topic><topic>Water Pollutants, Chemical - analysis</topic><topic>Water pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Huali</creatorcontrib><creatorcontrib>Ren, Zhongyu</creatorcontrib><creatorcontrib>Huang, Dan</creatorcontrib><creatorcontrib>Jing, Qi</creatorcontrib><creatorcontrib>Tang, Haokai</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of environmental research and public health</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Huali</au><au>Ren, Zhongyu</au><au>Huang, Dan</au><au>Jing, Qi</au><au>Tang, Haokai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Removal of Hexavalent Chromium in Aqueous Solution by Cellulose Filter Paper Loaded with Nano-Zero-Valent Iron: Performance Investigation and Numerical Modeling</atitle><jtitle>International journal of environmental research and public health</jtitle><addtitle>Int J Environ Res Public Health</addtitle><date>2023-01-19</date><risdate>2023</risdate><volume>20</volume><issue>3</issue><spage>1867</spage><pages>1867-</pages><issn>1660-4601</issn><issn>1661-7827</issn><eissn>1660-4601</eissn><abstract>Cr(VI) pollution in water bodies is very harmful to human health and the environment. Therefore, it is necessary to remove Cr(VI) from water. In this study, the composite (FP-nZVI) was prepared by loading nano-zero-valent iron (nZVI) onto cellulose filter paper (FP) using a liquid-phase reduction method to improve the dispersibility and oxidation resistance of nZVI. In batch experiments, the effects of iron loading of FP-nZVI, initial concentration of Cr(VI), temperature, and pH on Cr(VI) removal were particularly investigated. The maximum removal rate of 98.6% was achieved at 25 °C, pH = 5, initial concentration of Cr(VI) of 20 mg/L, and FeCl
·6H
O solution concentration of 0.8 mol/L. The removal of Cr(VI) by FP-nZVI conformed to a pseudo-second-order kinetic model and Langmuir isotherm model. The mechanism of Cr(VI) removal was a multi-step removal mechanism, involving adsorption, reduction, and coprecipitation. Column experiments investigated the effect of flow rate (1 mL/min, 3 mL/min, and 5 mL/min) on Cr(VI) removal. We found that increasing flow rate slightly decreased the removal rate of Cr(VI). The transport of Cr(VI) in composite porous media was simulated using HYDRUS-1D, and the results show that the two-site model can well simulate the reactive transport of Cr(VI). This study may provide a useful reference for the remediation of groundwater contaminated with Cr(VI) or other similar heavy metals using FP-nZVI.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36767247</pmid><doi>10.3390/ijerph20031867</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1660-4601 |
ispartof | International journal of environmental research and public health, 2023-01, Vol.20 (3), p.1867 |
issn | 1660-4601 1661-7827 1660-4601 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9915128 |
source | MDPI - Multidisciplinary Digital Publishing Institute; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access |
subjects | Activated carbon Adsorption Aqueous solutions Cellulose Chromium Chromium - analysis Composite materials Ethanol Ferric chloride Filter paper Flow velocity Fourier transforms Groundwater Groundwater pollution Groundwater treatment Heavy metals Hexavalent chromium Humans Investigations Iron Liquid phases Membrane separation Methods Nanoparticles Oxidation Oxidation resistance Pollutants Pollution Porous media Reagents Scanning electron microscopy Spectrum analysis Water Water Pollutants, Chemical - analysis Water pollution |
title | Removal of Hexavalent Chromium in Aqueous Solution by Cellulose Filter Paper Loaded with Nano-Zero-Valent Iron: Performance Investigation and Numerical Modeling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T05%3A04%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Removal%20of%20Hexavalent%20Chromium%20in%20Aqueous%20Solution%20by%20Cellulose%20Filter%20Paper%20Loaded%20with%20Nano-Zero-Valent%20Iron:%20Performance%20Investigation%20and%20Numerical%20Modeling&rft.jtitle=International%20journal%20of%20environmental%20research%20and%20public%20health&rft.au=Li,%20Huali&rft.date=2023-01-19&rft.volume=20&rft.issue=3&rft.spage=1867&rft.pages=1867-&rft.issn=1660-4601&rft.eissn=1660-4601&rft_id=info:doi/10.3390/ijerph20031867&rft_dat=%3Cproquest_pubme%3E2774893651%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2774893651&rft_id=info:pmid/36767247&rfr_iscdi=true |