Removal of Hexavalent Chromium in Aqueous Solution by Cellulose Filter Paper Loaded with Nano-Zero-Valent Iron: Performance Investigation and Numerical Modeling

Cr(VI) pollution in water bodies is very harmful to human health and the environment. Therefore, it is necessary to remove Cr(VI) from water. In this study, the composite (FP-nZVI) was prepared by loading nano-zero-valent iron (nZVI) onto cellulose filter paper (FP) using a liquid-phase reduction me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of environmental research and public health 2023-01, Vol.20 (3), p.1867
Hauptverfasser: Li, Huali, Ren, Zhongyu, Huang, Dan, Jing, Qi, Tang, Haokai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cr(VI) pollution in water bodies is very harmful to human health and the environment. Therefore, it is necessary to remove Cr(VI) from water. In this study, the composite (FP-nZVI) was prepared by loading nano-zero-valent iron (nZVI) onto cellulose filter paper (FP) using a liquid-phase reduction method to improve the dispersibility and oxidation resistance of nZVI. In batch experiments, the effects of iron loading of FP-nZVI, initial concentration of Cr(VI), temperature, and pH on Cr(VI) removal were particularly investigated. The maximum removal rate of 98.6% was achieved at 25 °C, pH = 5, initial concentration of Cr(VI) of 20 mg/L, and FeCl ·6H O solution concentration of 0.8 mol/L. The removal of Cr(VI) by FP-nZVI conformed to a pseudo-second-order kinetic model and Langmuir isotherm model. The mechanism of Cr(VI) removal was a multi-step removal mechanism, involving adsorption, reduction, and coprecipitation. Column experiments investigated the effect of flow rate (1 mL/min, 3 mL/min, and 5 mL/min) on Cr(VI) removal. We found that increasing flow rate slightly decreased the removal rate of Cr(VI). The transport of Cr(VI) in composite porous media was simulated using HYDRUS-1D, and the results show that the two-site model can well simulate the reactive transport of Cr(VI). This study may provide a useful reference for the remediation of groundwater contaminated with Cr(VI) or other similar heavy metals using FP-nZVI.
ISSN:1660-4601
1661-7827
1660-4601
DOI:10.3390/ijerph20031867