Arbitrarily Sparse Spectra for Self-Affine Spectral Measures

Given an expansive matrix R ∈ M d (ℤ) and a finite set of digit B taken from ℤ d / R ( ℤ d ). It was shown previously that if we can find an L such that ( R, B, L ) forms a Hadamard triple, then the associated fractal self-affine measure generated by ( R, B ) admits an exponential orthonormal basis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analysis mathematica (Budapest) 2023-03, Vol.49 (1), p.19-42
Hauptverfasser: An, L.-X., Lai, C.-K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 42
container_issue 1
container_start_page 19
container_title Analysis mathematica (Budapest)
container_volume 49
creator An, L.-X.
Lai, C.-K.
description Given an expansive matrix R ∈ M d (ℤ) and a finite set of digit B taken from ℤ d / R ( ℤ d ). It was shown previously that if we can find an L such that ( R, B, L ) forms a Hadamard triple, then the associated fractal self-affine measure generated by ( R, B ) admits an exponential orthonormal basis of certain frequency set Λ, and hence it is termed as a spectral measure. In this paper, we show that if # B < ∣det( R )∣, not only it is spectral, we can also construct arbitrarily sparse spectrum Λ in the sense that its Beurling dimension is zero.
doi_str_mv 10.1007/s10476-023-0191-9
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9906582</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2781277313</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-376d90c0783995630b366644fb4c884efbc49a3cb93828552d2eeeaa3aefcfbf3</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wN2A62hekweIUIovqLiogruQSW_qlHamJh2h_96UKRUXrg7ce8-5hw-hS0quKSHqJlEilMSEcUyoodgcoQEttcZM8Y9jNCCUc8x1yU7RWUoLQoiRmg_Q7ShW9Sa6WC-3xXTtYoIs4POoCG0sprAMeBRC3Rzmy-IFXOoipHN0EtwywcVeh-j94f5t_IQnr4_P49EEe0HFBnMlZ4Z4ojQ3ppScVFxKKUSohNdaQKi8MI77ynDNdFmyGQMA57iD4EMV-BDd9bnrrlrBzEOzq2HXsV65uLWtq-3fTVN_2nn7bY0hstQsB1ztA2L71UHa2EXbxSZ3tkxpypTimc8Q0f7KxzalCOHwgRK7o2x7yjZTtjvK1mQP6z0p3zZziL_J_5t-AKE1gIU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2781277313</pqid></control><display><type>article</type><title>Arbitrarily Sparse Spectra for Self-Affine Spectral Measures</title><source>Springer Online Journals</source><creator>An, L.-X. ; Lai, C.-K.</creator><creatorcontrib>An, L.-X. ; Lai, C.-K.</creatorcontrib><description>Given an expansive matrix R ∈ M d (ℤ) and a finite set of digit B taken from ℤ d / R ( ℤ d ). It was shown previously that if we can find an L such that ( R, B, L ) forms a Hadamard triple, then the associated fractal self-affine measure generated by ( R, B ) admits an exponential orthonormal basis of certain frequency set Λ, and hence it is termed as a spectral measure. In this paper, we show that if # B &lt; ∣det( R )∣, not only it is spectral, we can also construct arbitrarily sparse spectrum Λ in the sense that its Beurling dimension is zero.</description><identifier>ISSN: 0133-3852</identifier><identifier>EISSN: 1588-273X</identifier><identifier>DOI: 10.1007/s10476-023-0191-9</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Mathematics ; Mathematics and Statistics</subject><ispartof>Analysis mathematica (Budapest), 2023-03, Vol.49 (1), p.19-42</ispartof><rights>Akadémiai Kiadó 2023</rights><rights>Akadémiai Kiadó 2023.</rights><rights>Akadémiai Kiadó, Budapest 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-376d90c0783995630b366644fb4c884efbc49a3cb93828552d2eeeaa3aefcfbf3</citedby><cites>FETCH-LOGICAL-c414t-376d90c0783995630b366644fb4c884efbc49a3cb93828552d2eeeaa3aefcfbf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10476-023-0191-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10476-023-0191-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>An, L.-X.</creatorcontrib><creatorcontrib>Lai, C.-K.</creatorcontrib><title>Arbitrarily Sparse Spectra for Self-Affine Spectral Measures</title><title>Analysis mathematica (Budapest)</title><addtitle>Anal Math</addtitle><description>Given an expansive matrix R ∈ M d (ℤ) and a finite set of digit B taken from ℤ d / R ( ℤ d ). It was shown previously that if we can find an L such that ( R, B, L ) forms a Hadamard triple, then the associated fractal self-affine measure generated by ( R, B ) admits an exponential orthonormal basis of certain frequency set Λ, and hence it is termed as a spectral measure. In this paper, we show that if # B &lt; ∣det( R )∣, not only it is spectral, we can also construct arbitrarily sparse spectrum Λ in the sense that its Beurling dimension is zero.</description><subject>Analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0133-3852</issn><issn>1588-273X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWKs_wN2A62hekweIUIovqLiogruQSW_qlHamJh2h_96UKRUXrg7ce8-5hw-hS0quKSHqJlEilMSEcUyoodgcoQEttcZM8Y9jNCCUc8x1yU7RWUoLQoiRmg_Q7ShW9Sa6WC-3xXTtYoIs4POoCG0sprAMeBRC3Rzmy-IFXOoipHN0EtwywcVeh-j94f5t_IQnr4_P49EEe0HFBnMlZ4Z4ojQ3ppScVFxKKUSohNdaQKi8MI77ynDNdFmyGQMA57iD4EMV-BDd9bnrrlrBzEOzq2HXsV65uLWtq-3fTVN_2nn7bY0hstQsB1ztA2L71UHa2EXbxSZ3tkxpypTimc8Q0f7KxzalCOHwgRK7o2x7yjZTtjvK1mQP6z0p3zZziL_J_5t-AKE1gIU</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>An, L.-X.</creator><creator>Lai, C.-K.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20230301</creationdate><title>Arbitrarily Sparse Spectra for Self-Affine Spectral Measures</title><author>An, L.-X. ; Lai, C.-K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-376d90c0783995630b366644fb4c884efbc49a3cb93828552d2eeeaa3aefcfbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>An, L.-X.</creatorcontrib><creatorcontrib>Lai, C.-K.</creatorcontrib><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Analysis mathematica (Budapest)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>An, L.-X.</au><au>Lai, C.-K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Arbitrarily Sparse Spectra for Self-Affine Spectral Measures</atitle><jtitle>Analysis mathematica (Budapest)</jtitle><stitle>Anal Math</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>49</volume><issue>1</issue><spage>19</spage><epage>42</epage><pages>19-42</pages><issn>0133-3852</issn><eissn>1588-273X</eissn><abstract>Given an expansive matrix R ∈ M d (ℤ) and a finite set of digit B taken from ℤ d / R ( ℤ d ). It was shown previously that if we can find an L such that ( R, B, L ) forms a Hadamard triple, then the associated fractal self-affine measure generated by ( R, B ) admits an exponential orthonormal basis of certain frequency set Λ, and hence it is termed as a spectral measure. In this paper, we show that if # B &lt; ∣det( R )∣, not only it is spectral, we can also construct arbitrarily sparse spectrum Λ in the sense that its Beurling dimension is zero.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10476-023-0191-9</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0133-3852
ispartof Analysis mathematica (Budapest), 2023-03, Vol.49 (1), p.19-42
issn 0133-3852
1588-273X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9906582
source Springer Online Journals
subjects Analysis
Mathematics
Mathematics and Statistics
title Arbitrarily Sparse Spectra for Self-Affine Spectral Measures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T15%3A08%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Arbitrarily%20Sparse%20Spectra%20for%20Self-Affine%20Spectral%20Measures&rft.jtitle=Analysis%20mathematica%20(Budapest)&rft.au=An,%20L.-X.&rft.date=2023-03-01&rft.volume=49&rft.issue=1&rft.spage=19&rft.epage=42&rft.pages=19-42&rft.issn=0133-3852&rft.eissn=1588-273X&rft_id=info:doi/10.1007/s10476-023-0191-9&rft_dat=%3Cproquest_pubme%3E2781277313%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2781277313&rft_id=info:pmid/&rfr_iscdi=true