Arbitrarily Sparse Spectra for Self-Affine Spectral Measures

Given an expansive matrix R ∈ M d (ℤ) and a finite set of digit B taken from ℤ d / R ( ℤ d ). It was shown previously that if we can find an L such that ( R, B, L ) forms a Hadamard triple, then the associated fractal self-affine measure generated by ( R, B ) admits an exponential orthonormal basis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analysis mathematica (Budapest) 2023-03, Vol.49 (1), p.19-42
Hauptverfasser: An, L.-X., Lai, C.-K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given an expansive matrix R ∈ M d (ℤ) and a finite set of digit B taken from ℤ d / R ( ℤ d ). It was shown previously that if we can find an L such that ( R, B, L ) forms a Hadamard triple, then the associated fractal self-affine measure generated by ( R, B ) admits an exponential orthonormal basis of certain frequency set Λ, and hence it is termed as a spectral measure. In this paper, we show that if # B < ∣det( R )∣, not only it is spectral, we can also construct arbitrarily sparse spectrum Λ in the sense that its Beurling dimension is zero.
ISSN:0133-3852
1588-273X
DOI:10.1007/s10476-023-0191-9