Microglial Activation in Metal Neurotoxicity: Impact in Neurodegenerative Diseases

Neurodegenerative processes encompass a large variety of diseases with different pathological patterns and clinical features, such as Alzheimer’s and Parkinson’s diseases. Exposure to metals has been hypothesized to increase oxidative stress in brain cells leading to cell death and neurodegeneration...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BioMed research international 2023, Vol.2023 (1), p.7389508-7389508
Hauptverfasser: Martínez-Hernández, María I., Acosta-Saavedra, Leonor C., Hernández-Kelly, Luisa C., Loaeza-Loaeza, Jaqueline, Ortega, Arturo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Neurodegenerative processes encompass a large variety of diseases with different pathological patterns and clinical features, such as Alzheimer’s and Parkinson’s diseases. Exposure to metals has been hypothesized to increase oxidative stress in brain cells leading to cell death and neurodegeneration. Neurotoxicity of metals has been demonstrated by several in vitro and in vivo experimental studies, and most probably, each metal has its specific pathway to trigger cell death. As a result, exposure to essential metals, such as manganese, iron, copper, zinc, and cobalt, and nonessential metals, including lead, aluminum, and cadmium, perturbs metal homeostasis at the cellular and organism levels leading to neurodegeneration. In this contribution, a comprehensive review of the molecular mechanisms by which metals affect microglia physiology and signaling properties is presented. Furthermore, studies that validate the disruption of microglia activation pathways as an essential mechanism of metal toxicity that can contribute to neurodegenerative disease are also presented and discussed.
ISSN:2314-6133
2314-6141
DOI:10.1155/2023/7389508