PyLCP: A Python package for computing laser cooling physics
We present a Python object-oriented computer program for simulating various aspects of laser cooling physics. Our software is designed to be both easy to use and adaptable, allowing the user to specify the level structure, magnetic field profile, or the laser beams' geometry, detuning, and inte...
Gespeichert in:
Veröffentlicht in: | Computer physics communications 2022-01, Vol.270, p.108166, Article 108166 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a Python object-oriented computer program for simulating various aspects of laser cooling physics. Our software is designed to be both easy to use and adaptable, allowing the user to specify the level structure, magnetic field profile, or the laser beams' geometry, detuning, and intensity. The program contains three levels of approximation for the motion of the atom, applicable in different regimes offering cross checks for calculations and computational efficiency depending on the physical situation. We test the software by reproducing well-known phenomena, such as damped Rabi flopping, electromagnetically induced transparency, stimulated Raman adiabatic passage, and optical molasses. We also use our software package to quantitatively simulate recoil-limited magneto-optical traps, like those formed on the narrow 1S→30P1 transition in 88Sr and 87Sr. |
---|---|
ISSN: | 0010-4655 1879-2944 |
DOI: | 10.1016/j.cpc.2021.108166 |