Etch and Print: Graphene-Based Diodes for Silicon Technology
The graphene–silicon junction is one of the simplest conceivable interfaces in graphene-integrated semiconductor technology that can lead to the development of future generation of electronic and optoelectronic devices. However, graphene’s integration is currently expensive and time-consuming and sh...
Gespeichert in:
Veröffentlicht in: | ACS nano 2023-01, Vol.17 (2), p.1533-1540 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The graphene–silicon junction is one of the simplest conceivable interfaces in graphene-integrated semiconductor technology that can lead to the development of future generation of electronic and optoelectronic devices. However, graphene’s integration is currently expensive and time-consuming and shows several challenges in terms of large-scale device fabrication, effectively preventing the possibility of implementing this technology into industrial processes. Here, we show a simple and cost-effective fabrication technique, based on inkjet printing, for the realization of printed graphene–silicon rectifying devices. The printed graphene–silicon diodes show an ON/OFF ratio higher than 3 orders of magnitude and a significant photovoltaic effect, resulting in a fill factor of ∼40% and a photocurrent efficiency of ∼2%, making the devices suitable for both electronic and optoelectronic applications. Finally, we demonstrate large-area pixeled photodetectors and compatibility with back-end-of-line fabrication processes. |
---|---|
ISSN: | 1936-0851 1936-086X |
DOI: | 10.1021/acsnano.2c10684 |