Etch and Print: Graphene-Based Diodes for Silicon Technology

The graphene–silicon junction is one of the simplest conceivable interfaces in graphene-integrated semiconductor technology that can lead to the development of future generation of electronic and optoelectronic devices. However, graphene’s integration is currently expensive and time-consuming and sh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2023-01, Vol.17 (2), p.1533-1540
Hauptverfasser: Grillo, Alessandro, Peng, Zixing, Pelella, Aniello, Di Bartolomeo, Antonio, Casiraghi, Cinzia
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The graphene–silicon junction is one of the simplest conceivable interfaces in graphene-integrated semiconductor technology that can lead to the development of future generation of electronic and optoelectronic devices. However, graphene’s integration is currently expensive and time-consuming and shows several challenges in terms of large-scale device fabrication, effectively preventing the possibility of implementing this technology into industrial processes. Here, we show a simple and cost-effective fabrication technique, based on inkjet printing, for the realization of printed graphene–silicon rectifying devices. The printed graphene–silicon diodes show an ON/OFF ratio higher than 3 orders of magnitude and a significant photovoltaic effect, resulting in a fill factor of ∼40% and a photocurrent efficiency of ∼2%, making the devices suitable for both electronic and optoelectronic applications. Finally, we demonstrate large-area pixeled photodetectors and compatibility with back-end-of-line fabrication processes.
ISSN:1936-0851
1936-086X
DOI:10.1021/acsnano.2c10684