Navigating with chemometrics and machine learning in chemistry

Chemometrics and machine learning are artificial intelligence-based methods stirring a transformative change in chemistry. Organic synthesis, drug discovery and analytical techniques are incorporating machine learning techniques at an accelerated pace. However, machine-assisted chemistry faces chall...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Artificial intelligence review 2023-09, Vol.56 (9), p.9089-9114
1. Verfasser: Joshi, Payal B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Chemometrics and machine learning are artificial intelligence-based methods stirring a transformative change in chemistry. Organic synthesis, drug discovery and analytical techniques are incorporating machine learning techniques at an accelerated pace. However, machine-assisted chemistry faces challenges while solving critical problems in chemistry due to complex relationships in data sets. Even with increasing publishing volumes on machine learning, its application in areas of chemistry is not a straightforward endeavour. A particular concern in applying machine learning in chemistry is data availability and reproducibility. The present review article discusses the various chemometric methods, expert systems, and machine learning techniques developed for solving problems of organic synthesis and drug discovery with selected examples. Further, a concise discussion on chemometrics and ML deployed in analytical techniques such as, spectroscopy, microscopy and chromatography are presented. Finally, the review reflects the challenges, opportunities and future perspectives on machine learning and automation in chemistry. The review concludes by pondering on some tough questions on applying machine learning and their possibility of navigation in the different terrains of chemistry.
ISSN:0269-2821
1573-7462
DOI:10.1007/s10462-023-10391-w