Minimizing Molecular Misidentification in Imaging Low-Abundance Protein Interactions Using Spectroscopic Single-Molecule Localization Microscopy

Super-resolution microscopy can capture spatiotemporal organizations of protein interactions with resolution down to 10 nm; however, the analyses of more than two proteins involving low-abundance protein are challenging because spectral crosstalk and heterogeneities of individual fluorescent labels...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2022-10, Vol.94 (40), p.13834-13841
Hauptverfasser: Zhang, Yang, Wang, Gaoxiang, Huang, Peizhou, Sun, Edison, Kweon, Junghun, Li, Qianru, Zhe, Ji, Ying, Leslie L., Zhang, Hao F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Super-resolution microscopy can capture spatiotemporal organizations of protein interactions with resolution down to 10 nm; however, the analyses of more than two proteins involving low-abundance protein are challenging because spectral crosstalk and heterogeneities of individual fluorescent labels result in molecular misidentification. Here we developed a deep learning-based imaging analysis method for spectroscopic single-molecule localization microscopy to minimize molecular misidentification in three-color super-resolution imaging. We characterized the 3-fold reduction of molecular misidentification in the new imaging method using pure samples of different photoswitchable fluorophores and visualized three distinct subcellular proteins in U2-OS cell lines. We further validated the protein counts and interactions of TOMM20, DRP1, and SUMO1 in a well-studied biological process, Staurosporine-induced apoptosis, by comparing the imaging results with Western-blot analyses of different subcellular portions.
ISSN:0003-2700
1520-6882
1520-6882
DOI:10.1021/acs.analchem.2c02417