Recent advancements in single dose slow-release devices for prophylactic vaccines

Single dose slow-release vaccines herald a new era in vaccine administration. An ideal device for slow-release vaccine delivery would be minimally invasive and self-administered, making these approaches an attractive alternative for mass vaccination programs, particularly during the time of a pandem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology 2023-01, Vol.15 (1), p.e1832-e1832
Hauptverfasser: Ray, Sayoni, Puente, Armando, Steinmetz, Nicole F, Pokorski, Jonathan K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Single dose slow-release vaccines herald a new era in vaccine administration. An ideal device for slow-release vaccine delivery would be minimally invasive and self-administered, making these approaches an attractive alternative for mass vaccination programs, particularly during the time of a pandemic. In this review article, we discuss the latest advances in this field, specifically for prophylactic vaccines able to prevent infectious diseases. Recent studies have found that slow-release vaccines elicit better immune responses and often do not require cold chain transportation and storage, thus drastically reducing the cost, streamlining distribution, and improving efficacy. This promise has attracted significant attention, especially when poor patient compliance of the standard multidose vaccine regimes is considered. Single dose slow-release vaccines are the next generation of vaccine tools that could overcome most of the shortcomings of present vaccination programs and be the next platform technology to combat future pandemics. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Implantable Materials and Surgical Technologies > Nanomaterials and Implants Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
ISSN:1939-5116
1939-0041
1939-0041
DOI:10.1002/wnan.1832