Multiplex CRISPR/Cas9 gene-editing platform in oil palm targeting mutations in EgFAD2 and EgPAT genes
Background CRISPR/Cas9 is the most powerful and versatile genome-editing tool that permits multiplexed-targeted gene modifications for the genetic enhancement of oil palm. Multiplex genome-editing has recently been developed for modifying multiple loci in a gene or multiple genes in a genome with hi...
Gespeichert in:
Veröffentlicht in: | Journal of Genetic Engineering and Biotechnology 2023-12, Vol.21 (1), p.3-18, Article 3 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background
CRISPR/Cas9 is the most powerful and versatile genome-editing tool that permits multiplexed-targeted gene modifications for the genetic enhancement of oil palm. Multiplex genome-editing has recently been developed for modifying multiple loci in a gene or multiple genes in a genome with high precision. This study focuses on the development of high-oleic oil palm, the primary target trait for healthy low-saturated oil. To achieve this, the
fatty acid desaturase 2
(
FAD2
) and
palmitoyl-acyl carrier protein thioesterase
(
PAT
) genes, both of which are associated with fatty acid metabolism biosynthesis pathways in oil palm, need to be knocked out. The knockout of
FAD2
and
PAT
leads to an accumulation of oleic acid content in oil palms.
Results
A total of four single-guide RNAs (sgRNAs) were designed in silico based on the genomic sequences of
EgFAD2
and
EgPAT.
Using robust plant CRISPR/Cas9 vector technology, multiple sgRNA expression cassettes were efficiently constructed into a single-binary CRISPR/Cas9 vector to edit the
EgFAD2
and
EgPAT
genes. Each of the constructed transformation vectors was then delivered into oil palm embryogenic calli using the biolistic,
Agrobacterium
-mediated, and PEG-mediated protoplast transformation methods. Sequence analysis of PCR products from 15 samples confirmed that mutations were introduced at four target sites of the oil palm
EgFAD2
and
EgPAT
genes. Single- and double-knockout mutants of both genes were generated, with large and small deletions within the targeted regions. Mutations found at EgFAD2 and EgPAT target sites indicate that the Cas9/sgRNA genome-editing system effectively knocked out both genes in oil palm.
Conclusion
This technology is the first in oil palm to use CRISPR/Cas9 genome-editing to target high-oleic-associated genes. These findings showed that multiplex genome-editing in oil palm could be achieved using multiple sgRNAs. Targeted mutations detected establish that the CRISPR/Cas9 technology offers a great potential for oil palm. |
---|---|
ISSN: | 1687-157X 2090-5920 |
DOI: | 10.1186/s43141-022-00459-5 |