Deep Gradient Learning for Efficient Camouflaged Object Detection
This paper introduces deep gradient network (DGNet), a novel deep framework that exploits object gradient supervision for camouflaged object detection (COD). It decouples the task into two connected branches, i.e., a context and a texture encoder. The essential connection is the gradient-induced tra...
Gespeichert in:
Veröffentlicht in: | International journal of automation and computing 2023-02, Vol.20 (1), p.92-108 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper introduces deep gradient network (DGNet), a novel deep framework that exploits object gradient supervision for camouflaged object detection (COD). It decouples the task into two connected branches, i.e., a context and a texture encoder. The essential connection is the gradient-induced transition, representing a soft grouping between context and texture features. Benefiting from the simple but efficient framework, DGNet outperforms existing state-of-the-art COD models by a large margin. Notably, our efficient version, DGNet-S, runs in real-time (80 fps) and achieves comparable results to the cutting-edge model JCSOD-CVPR21 with only 6.82% parameters. The application results also show that the proposed DGNet performs well in the polyp segmentation, defect detection, and transparent object segmentation tasks. The code will be made available at
https://github.com/GewelsJI/DGNet
. |
---|---|
ISSN: | 2731-538X 1476-8186 2153-182X 2731-5398 1751-8520 2153-1838 |
DOI: | 10.1007/s11633-022-1365-9 |