Fine particulate matter and incident coronary heart disease events up to 10 years of follow-up among Deepwater Horizon oil spill workers
During the 2010 Deepwater Horizon (DWH) disaster, in-situ burning and flaring were conducted to remove oil from the water. Workers near combustion sites were potentially exposed to burning-related fine particulate matter (PM2.5). Exposure to PM2.5 has been linked to increased risk of coronary heart...
Gespeichert in:
Veröffentlicht in: | Environmental research 2023-01, Vol.217, p.114841-114841, Article 114841 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | During the 2010 Deepwater Horizon (DWH) disaster, in-situ burning and flaring were conducted to remove oil from the water. Workers near combustion sites were potentially exposed to burning-related fine particulate matter (PM2.5). Exposure to PM2.5 has been linked to increased risk of coronary heart disease (CHD), but no study has examined the relationship among oil spill workers.
To investigate the association between estimated PM2.5 from burning/flaring of oil/gas and CHD risk among the DWH oil spill workers.
We included workers who participated in response and cleanup activities on the water during the DWH disaster (N = 9091). PM2.5 exposures were estimated using a job-exposure matrix that linked modelled PM2.5 concentrations to detailed DWH spill work histories provided by participants. We ascertained CHD events as the first self-reported physician-diagnosed CHD or a fatal CHD event that occurred after each worker's last day of burning exposure. We estimated hazard ratios (HR) and 95% confidence intervals (95%CI) for the associations between categories of average or cumulative daily maximum PM2.5 exposure (versus a referent category of water workers not near controlled burning) and subsequent CHD. We assessed exposure-response trends by examining continuous exposure parameters in models.
We observed increased CHD hazard among workers with higher levels of average daily maximum exposure (low vs. referent: HR = 1.26, 95% CI: 0.93, 1.70; high vs. referent: HR = 2.11, 95% CI: 1.08, 4.12; per 10 μg/m3 increase: HR = 1.10, 95% CI: 1.02, 1.19). We also observed suggestively elevated HRs among workers with higher cumulative daily maximum exposure (low vs. referent: HR = 1.19, 95% CI: 0.68, 2.08; medium vs. referent: HR = 1.38, 95% CI: 0.88, 2.16; high vs. referent: HR = 1.44, 95% CI: 0.96, 2.14; per 100 μg/m3-d increase: HR = 1.03, 95% CI: 1.00, 1.05).
Among oil spill workers, exposure to PM2.5 from flaring/burning of oil/gas was associated with increased risk of CHD.
•In the Deepwater Horizon disaster, controlled burning of oil/gas produced PM2.5.•Many oil spill workers were exposed to PM2.5 levels above the EPA's daily standard.•PM2.5 exposure was linked to higher risk of coronary heart disease among workers.•Increase in heart disease risk persisted up to 10 years after the burning exposure. |
---|---|
ISSN: | 0013-9351 1096-0953 |
DOI: | 10.1016/j.envres.2022.114841 |