Parts-based decomposition of spatial genomics data finds distinct tissue regions

Dimension reduction is a cornerstone of exploratory data analysis; however, traditional methods fail to preserve the spatial context of spatial genomics data. In this work, we develop a nonnegative spatial factorization (NSF) model that allows interpretable, parts-based decomposition of spatial sing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature methods 2023-02, Vol.20 (2), p.187-188
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dimension reduction is a cornerstone of exploratory data analysis; however, traditional methods fail to preserve the spatial context of spatial genomics data. In this work, we develop a nonnegative spatial factorization (NSF) model that allows interpretable, parts-based decomposition of spatial single-cell count data. NSF allows label-free annotation of regions of interest in spatial genomics data and identifies genes and cells that can be used to define those regions.
ISSN:1548-7091
1548-7105
DOI:10.1038/s41592-022-01725-7