Parts-based decomposition of spatial genomics data finds distinct tissue regions
Dimension reduction is a cornerstone of exploratory data analysis; however, traditional methods fail to preserve the spatial context of spatial genomics data. In this work, we develop a nonnegative spatial factorization (NSF) model that allows interpretable, parts-based decomposition of spatial sing...
Gespeichert in:
Veröffentlicht in: | Nature methods 2023-02, Vol.20 (2), p.187-188 |
---|---|
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Dimension reduction is a cornerstone of exploratory data analysis; however, traditional methods fail to preserve the spatial context of spatial genomics data. In this work, we develop a nonnegative spatial factorization (NSF) model that allows interpretable, parts-based decomposition of spatial single-cell count data. NSF allows label-free annotation of regions of interest in spatial genomics data and identifies genes and cells that can be used to define those regions. |
---|---|
ISSN: | 1548-7091 1548-7105 |
DOI: | 10.1038/s41592-022-01725-7 |