A Systematic Review of Electronic Medical Record Driven Quality Measurement and Feedback Systems
Historically, quality measurement analyses utilize manual chart abstraction from data collected primarily for administrative purposes. These methods are resource-intensive, time-delayed, and often lack clinical relevance. Electronic Medical Records (EMRs) have increased data availability and opportu...
Gespeichert in:
Veröffentlicht in: | International journal of environmental research and public health 2022-12, Vol.20 (1), p.200 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Historically, quality measurement analyses utilize manual chart abstraction from data collected primarily for administrative purposes. These methods are resource-intensive, time-delayed, and often lack clinical relevance. Electronic Medical Records (EMRs) have increased data availability and opportunities for quality measurement. However, little is known about the effectiveness of Measurement Feedback Systems (MFSs) in utilizing EMR data. This study explores the effectiveness and characteristics of EMR-enabled MFSs in tertiary care. The search strategy guided by the PICO Framework was executed in four databases. Two reviewers screened abstracts and manuscripts. Data on effect and intervention characteristics were extracted using a tailored version of the Cochrane EPOC abstraction tool. Due to study heterogeneity, a narrative synthesis was conducted and reported according to PRISMA guidelines. A total of 14 unique MFS studies were extracted and synthesized, of which 12 had positive effects on outcomes. Findings indicate that quality measurement using EMR data is feasible in certain contexts and successful MFSs often incorporated electronic feedback methods, supported by clinical leadership and action planning. EMR-enabled MFSs have the potential to reduce the burden of data collection for quality measurement but further research is needed to evaluate EMR-enabled MFSs to translate and scale findings to broader implementation contexts. |
---|---|
ISSN: | 1660-4601 1661-7827 1660-4601 |
DOI: | 10.3390/ijerph20010200 |