The origin of enhanced \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{{{{{{\rm{O}}}}}}}}}_{2}^{+}$$\end{document}O2+ production from photoionized CO2 clusters
CO 2 -rich planetary atmospheres are continuously exposed to ionising radiation driving major photochemical processes. In the Martian atmosphere, CO 2 clusters are predicted to exist at high altitudes motivating a deeper understanding of their photochemistry. In this joint experimental-theoretical s...
Gespeichert in:
Veröffentlicht in: | Communications chemistry 2022-02, Vol.5 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | CO
2
-rich planetary atmospheres are continuously exposed to ionising radiation driving major photochemical processes. In the Martian atmosphere, CO
2
clusters are predicted to exist at high altitudes motivating a deeper understanding of their photochemistry. In this joint experimental-theoretical study, we investigate the photoreactions of CO
2
clusters (≤2 nm) induced by soft X-ray ionisation. We observe dramatically enhanced production of
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{{\rm{O}}}_{2}^{+}$$\end{document}
O
2
+
from photoionized CO
2
clusters compared to the case of the isolated molecule and identify two relevant reactions. Using quantum chemistry calculations and multi-coincidence mass spectrometry, we pinpoint the origin of this enhancement: A size-dependent structural transition of the clusters from a covalently bonded arrangement to a weakly bonded polyhedral geometry that activates an exothermic reaction producing
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{{\rm{O}}}_{2}^{+}$$\end{document}
O
2
+
. Our results unambiguously demonstrate that the photochemistry of small clusters/particles will likely have a strong influence on the ion balance in atmospheres.
In the Martian atmosphere, CO
2
clusters are predicted to exist at high altitudes motivating a deeper understanding of their photochemistry. Here the authors use quantum chemistry calculations and multi-coincidence mass spectrometry to show that a size-dependent structural transition enhances the production of
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{{\rm{O}}}_{2}^{+}$$\end{document}
O
2
+
from photoionized CO
2
clusters. |
---|---|
ISSN: | 2399-3669 |
DOI: | 10.1038/s42004-022-00629-z |