The origin of enhanced \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{{{{{{\rm{O}}}}}}}}}_{2}^{+}$$\end{document}O2+ production from photoionized CO2 clusters

CO 2 -rich planetary atmospheres are continuously exposed to ionising radiation driving major photochemical processes. In the Martian atmosphere, CO 2 clusters are predicted to exist at high altitudes motivating a deeper understanding of their photochemistry. In this joint experimental-theoretical s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications chemistry 2022-02, Vol.5
Hauptverfasser: Ganguly, Smita, Barreiro-Lage, Dario, Walsh, Noelle, Oostenrijk, Bart, Sorensen, Stacey L., Díaz-Tendero, Sergio, Gisselbrecht, Mathieu
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:CO 2 -rich planetary atmospheres are continuously exposed to ionising radiation driving major photochemical processes. In the Martian atmosphere, CO 2 clusters are predicted to exist at high altitudes motivating a deeper understanding of their photochemistry. In this joint experimental-theoretical study, we investigate the photoreactions of CO 2 clusters (≤2 nm) induced by soft X-ray ionisation. We observe dramatically enhanced production of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\rm{O}}}_{2}^{+}$$\end{document} O 2 + from photoionized CO 2 clusters compared to the case of the isolated molecule and identify two relevant reactions. Using quantum chemistry calculations and multi-coincidence mass spectrometry, we pinpoint the origin of this enhancement: A size-dependent structural transition of the clusters from a covalently bonded arrangement to a weakly bonded polyhedral geometry that activates an exothermic reaction producing \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\rm{O}}}_{2}^{+}$$\end{document} O 2 + . Our results unambiguously demonstrate that the photochemistry of small clusters/particles will likely have a strong influence on the ion balance in atmospheres. In the Martian atmosphere, CO 2 clusters are predicted to exist at high altitudes motivating a deeper understanding of their photochemistry. Here the authors use quantum chemistry calculations and multi-coincidence mass spectrometry to show that a size-dependent structural transition enhances the production of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\rm{O}}}_{2}^{+}$$\end{document} O 2 + from photoionized CO 2 clusters.
ISSN:2399-3669
DOI:10.1038/s42004-022-00629-z