Mineral-mediated carbohydrate synthesis by mechanical forces in a primordial geochemical setting

The formation of carbohydrates represents an essential step to provide building blocks and a source of chemical energy in several models for the emergence of life. Formaldehyde, glycolaldehyde and a basic catalyst are the initial components forming a variety of sugar molecules in the cascade-type mu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications chemistry 2020-10, Vol.3 (1), p.140-140, Article 140
Hauptverfasser: Haas, Maren, Lamour, Saskia, Christ, Sarah Babette, Trapp, Oliver
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The formation of carbohydrates represents an essential step to provide building blocks and a source of chemical energy in several models for the emergence of life. Formaldehyde, glycolaldehyde and a basic catalyst are the initial components forming a variety of sugar molecules in the cascade-type multi-step formose reaction. While numerous side reactions and even deterioration can be observed in aqueous media, selective prebiotic sugar formation is feasible in solid-state, mechanochemical reactions and might have occurred in early geochemistry. However, the precise role of different basic catalysts and the influence of the atmospheric conditions in the solid-state formose reaction remain unknown. Here we show, that in a primordial scenario the mechanochemical formose reaction is capable to form monosaccharides with a broad variety of mineral classes as catalysts with only minute amounts of side products such as lactic acid or methanol, independent of the atmospheric conditions. The results give insight into recent findings of formose sugars on meteorites and offer a water-free and robust pathway for monosaccharides independent of the external conditions both for the early Earth or an extra-terrestrial setting. Formose chemistry has been proposed as a prebiotic route to carbohydrates, but simple mechanisms that impart selectivity are few. Here a range of minerals thought to have existed in the Hadean environment are shown to bias the product distribution of mechanochemical carbohydrate synthesis towards pentoses and hexoses.
ISSN:2399-3669
2399-3669
DOI:10.1038/s42004-020-00387-w