Perovskites fabricated on textured silicon surfaces for tandem solar cells
The silicon surface texture significantly affects the current density and efficiency of perovskite/silicon tandem solar cells. However, only a few studies have explored fabricating perovskite on textured silicon and the effect of texture on perovskite films because of the limitations of solution pro...
Gespeichert in:
Veröffentlicht in: | Communications chemistry 2020-03, Vol.3 (1), p.37-37, Article 37 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The silicon surface texture significantly affects the current density and efficiency of perovskite/silicon tandem solar cells. However, only a few studies have explored fabricating perovskite on textured silicon and the effect of texture on perovskite films because of the limitations of solution processes. Here we produce conformal perovskite on textured silicon with a dry two-step conversion process that incorporates lead oxide sputtering and direct contact with methyl ammonium iodide. To separately analyze the influence of each texture structure on perovskite films, patterned texture, high-resolution photoluminescence (μ-PL), and light beam-induced current (μ-LBIC), 3D mapping is used. This work elucidates conformal perovskite on textured surfaces and shows the effects of textured silicon on the perovskite layers with high-resolution 3D mapping. This approach can potentially be applied to any type of layer on any type of substrate.
The efficiency of perovskite/silicon tandem solar cells is affected by silicon surface texture, however fabrication processes in solution limit surface studies. Here a perovskite layer on textured silicon is formed through a dry two-step conversion process with lead oxide sputtering and direct contact with methyl ammonium iodide. |
---|---|
ISSN: | 2399-3669 2399-3669 |
DOI: | 10.1038/s42004-020-0283-4 |