Structural characterisation of molecular conformation and the incorporation of adatoms in an on-surface Ullmann-type reaction
The on-surface synthesis of covalently bonded materials differs from solution-phase synthesis in several respects. The transition from a three-dimensional reaction volume to quasi-two-dimensional confinement, as is the case for on-surface synthesis, has the potential to facilitate alternative reacti...
Gespeichert in:
Veröffentlicht in: | Communications chemistry 2020-11, Vol.3 (1), p.166, Article 166 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The on-surface synthesis of covalently bonded materials differs from solution-phase synthesis in several respects. The transition from a three-dimensional reaction volume to quasi-two-dimensional confinement, as is the case for on-surface synthesis, has the potential to facilitate alternative reaction pathways to those available in solution. Ullmann-type reactions, where the surface plays a role in the coupling of aryl-halide functionalised species, has been shown to facilitate extended one- and two-dimensional structures. Here we employ a combination of scanning tunnelling microscopy (STM), X-ray photoelectron spectroscopy (XPS) and X-ray standing wave (XSW) analysis to perform a chemical and structural characterisation of the Ullmann-type coupling of two iodine functionalised species on a Ag(111) surface held under ultra-high vacuum (UHV) conditions. Our results allow characterisation of molecular conformations and adsorption geometries within an on-surface reaction and provide insight into the incorporation of metal adatoms within the intermediate structures of the reaction.
Ullmann-type reactions on metal surfaces are widely studied examples of on-surface synthesis. Here the combination of normal incidence X-ray standing wave analysis, X-ray photoelectron spectroscopy, and scanning tunneling microscopy enables the characterisation of molecular conformations in two such reactions. |
---|---|
ISSN: | 2399-3669 2399-3669 |
DOI: | 10.1038/s42004-020-00402-0 |