Spirotetramat resistance in Myzus persicae (Sulzer) (Hemiptera: Aphididae) and its association with the presence of the A2666V mutation
BACKGROUND Chemicals are widely used to protect field crops against aphid pests and aphid‐borne viral diseases. One such species is Myzus persicae (Sulzer), a global pest that attacks a broad array of agricultural crops and transmits many economically damaging plant viruses. This species has evolved...
Gespeichert in:
Veröffentlicht in: | Pest management science 2022-11, Vol.78 (11), p.4822-4831 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | BACKGROUND
Chemicals are widely used to protect field crops against aphid pests and aphid‐borne viral diseases. One such species is Myzus persicae (Sulzer), a global pest that attacks a broad array of agricultural crops and transmits many economically damaging plant viruses. This species has evolved resistance to a large number of insecticide compounds as a result of widespread and repeated chemical use in many parts of the world. In this study, we investigated the evolution of resistance to a new plant protection product, spirotetramat, following reported chemical control failures.
RESULTS
Our study provides clear phenotypic and genotypic evidence of spirotetramat resistance in populations of M. persicae from Australia. We show there is cross‐resistance to other insecticides within the same chemical group, namely spiromesifen and spirodiclofen. We also demonstrate that resistance is associated with the previously reported mutation, A2226V in the target site of spirotetramat, acetyl‐CoA carboxylase. Our genetic analysis found all resistant M. persicae populations belong to the same multi‐locus clonal type and carry the A2226V mutation, which appears to be inherited as a dominant trait in this species.
CONCLUSION
Our findings provide new insight into the resistance conferred by A2226V and have implications for the control of M. persicae in Australia and worldwide. A diagnostic assay developed in this study should serve as a valuable tool for future resistance monitoring and to support the implementation of pest management strategies. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Insecticide resistance in Myzus persicae is commonplace in many parts of the world. This now includes resistance to spirotetramat (and other Group 23 compounds), which we show is associated with a mutation in acetyl‐CoA carboxylase. This mutation, A2226V, appears to be inherited as a dominant trait in this species. |
---|---|
ISSN: | 1526-498X 1526-4998 |
DOI: | 10.1002/ps.7103 |