Novel idea generation in social networks is optimized by exposure to a "Goldilocks" level of idea-variability
Recent works suggest that striking a balance between maximizing idea stimulation and minimizing idea redundancy can elevate novel idea generation performances in self-organizing social networks. We explore whether dispersing the visibility of high-performing idea generators can help achieve such a t...
Gespeichert in:
Veröffentlicht in: | PNAS nexus 2022-11, Vol.1 (5), p.pgac255-pgac255 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recent works suggest that striking a balance between maximizing idea stimulation and minimizing idea redundancy can elevate novel idea generation performances in self-organizing social networks. We explore whether dispersing the visibility of high-performing idea generators can help achieve such a trade-off. We employ popularity signals (follower counts) of participants as an external source of variation in network structures, which we control across four conditions in a randomized setting. We observe that popularity signals influence inspiration-seeking ties, partly by biasing people's perception of their peers' novel idea-generation performances. Networks that partially disperse the top ideators' visibility using this external signal show reduced idea redundancy and elevated idea-generation performances. However, extreme dispersal leads to inferior performances by narrowing the range of idea stimulation. Our work holds future-of-work implications for elevating idea generation performances of people. |
---|---|
ISSN: | 2752-6542 2752-6542 |
DOI: | 10.1093/pnasnexus/pgac255 |