Synergistic Flame Retardant Effect between Ionic Liquid-Functionalized Imogolite Nanotubes and Ammonium Polyphosphate in Unsaturated Polyester Resin
Imogolite nanotubes (INTs) were synthesized from tetraethoxysilane, aluminum nitrate nonahydrate, and ammonia solution by the method of Arancibia-Miranda, and their dispersion was modified by 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM]PF6) to obtain ionic liquid (IL)-functionalized INTs...
Gespeichert in:
Veröffentlicht in: | ACS omega 2022-12, Vol.7 (51), p.47601-47609 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Imogolite nanotubes (INTs) were synthesized from tetraethoxysilane, aluminum nitrate nonahydrate, and ammonia solution by the method of Arancibia-Miranda, and their dispersion was modified by 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM]PF6) to obtain ionic liquid (IL)-functionalized INTs (INTs-PF6-ILs). Then, the flame retardant INTs-PF6-ILs was complexed with ammonium polyphosphate (APP) and applied to unsaturated polyester resin (UPR). The limiting oxygen index value and the UL-94 level of the UPR/APP/INTs-PF6-ILs composites reached 28 and V-0, respectively. The residual carbon of the composites in thermogravimetric analysis increased by 19.47%, compared with that of pure UPR. The cone calorimeter test result showed that the peak of heat release rate and total heat rate values of the UPR/APP/INTs-PF6-ILs composites were lowered by 41 and 34% than those of the pure UPR, respectively. The effect of heat combustion and the maximum mass loss rate of UPR/APP/INTs-PF6-ILs composites were also greatly decreased. There were no holes or folds observed on the surface of the UPR/APP/INTs-PF6-ILs composites’ residual carbon in scanning electron microscopy images. The intact residual carbon could have effectively insulated the heat and oxygen to improve the flame retardant performance. |
---|---|
ISSN: | 2470-1343 2470-1343 |
DOI: | 10.1021/acsomega.2c02803 |