Magnetically Separable Visible Light-Active Ag0.75Ni0.25 Binary Alloy Nanoparticles as a Highly Efficient Photocatalyst for the Selective Oxidative Coupling of Aniline to Azobenzene

Aniline wastes can be converted to useful pharmaceutical and industrial compounds like azobenzene. For this purpose, a bimetallic Ag0.75Ni0.25 alloy is designed in the nanoscale range resembling a fivefold twinned morphology using water as the solvent. These newly developed alloy nanoparticles (NPs)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS omega 2022-12, Vol.7 (51), p.48615-48622
Hauptverfasser: Agarwal, Soniya, Dowara, Bidisa, Kumar, Sanjeev, Kumar, Vinod, Deori, Kalyanjyoti
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aniline wastes can be converted to useful pharmaceutical and industrial compounds like azobenzene. For this purpose, a bimetallic Ag0.75Ni0.25 alloy is designed in the nanoscale range resembling a fivefold twinned morphology using water as the solvent. These newly developed alloy nanoparticles (NPs) are employed for the first time as an efficient visible light-active photocatalyst for the oxidative homocoupling of aniline to azobenzene. Our catalytic protocol is highly sustainable for a large number of aniline substrates with a high yield of the product (up to 95%), which might be attributed to the combinational and superior properties achieved on alloy formation in comparison to the monometallic counterparts. High-electron density amines (p-anisidine) display greater photocatalytic proficiency than that of low-electron density amines (4-fluoroaniline). The developed photocatalyst is magnetically well-separable and can be reused for at least five catalytic cycles without appreciable loss in its activity.
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.2c07441