Magnetically Separable Visible Light-Active Ag0.75Ni0.25 Binary Alloy Nanoparticles as a Highly Efficient Photocatalyst for the Selective Oxidative Coupling of Aniline to Azobenzene
Aniline wastes can be converted to useful pharmaceutical and industrial compounds like azobenzene. For this purpose, a bimetallic Ag0.75Ni0.25 alloy is designed in the nanoscale range resembling a fivefold twinned morphology using water as the solvent. These newly developed alloy nanoparticles (NPs)...
Gespeichert in:
Veröffentlicht in: | ACS omega 2022-12, Vol.7 (51), p.48615-48622 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Aniline wastes can be converted to useful pharmaceutical and industrial compounds like azobenzene. For this purpose, a bimetallic Ag0.75Ni0.25 alloy is designed in the nanoscale range resembling a fivefold twinned morphology using water as the solvent. These newly developed alloy nanoparticles (NPs) are employed for the first time as an efficient visible light-active photocatalyst for the oxidative homocoupling of aniline to azobenzene. Our catalytic protocol is highly sustainable for a large number of aniline substrates with a high yield of the product (up to 95%), which might be attributed to the combinational and superior properties achieved on alloy formation in comparison to the monometallic counterparts. High-electron density amines (p-anisidine) display greater photocatalytic proficiency than that of low-electron density amines (4-fluoroaniline). The developed photocatalyst is magnetically well-separable and can be reused for at least five catalytic cycles without appreciable loss in its activity. |
---|---|
ISSN: | 2470-1343 2470-1343 |
DOI: | 10.1021/acsomega.2c07441 |