Self-Powered, Broadband Photodetector Based on Two-Dimensional Tellurium-Silicon Heterojunction
As a new class of two-dimensional (2D) materials and a group-VI chalcogen, tellurium (Te) has emerged as a p-type semiconductor with high carrier mobility. Potential applications include high-speed opto-electronic devices for communication. One method to enhance the performance of 2D material-based...
Gespeichert in:
Veröffentlicht in: | ACS omega 2022-12, Vol.7 (51), p.48383-48390 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | As a new class of two-dimensional (2D) materials and a group-VI chalcogen, tellurium (Te) has emerged as a p-type semiconductor with high carrier mobility. Potential applications include high-speed opto-electronic devices for communication. One method to enhance the performance of 2D material-based photodetectors is by integration with a IV group of semiconductors such as silicon (Si). In this work, we demonstrate a self-powered, high-speed, broadband photodetector based on the 2D Te/n-type Si heterojunction. The fabricated Te/n-type Si heterojunction exhibits high performance in the UV–vis–NIR light with a high responsivity of up to ∼250 mA/W and a photocurrent-to-dark current ratio (I on/I off) of ∼106, fast response time of 8.6 μs, and superior repeatability and stability. The results show that the fabricated Te/n-type Si heterojunction photodetector has a strong potential to be utilized in ultrafast, broadband, and efficient photodetection applications. |
---|---|
ISSN: | 2470-1343 2470-1343 |
DOI: | 10.1021/acsomega.2c06589 |