The quest for the missing links in fatty liver genetics: Deep learning to the rescue
Park, MacLean, et al. conduct an exome-wide association study of liver fat content in the Penn Medicine BioBank.1 By leveraging machine learning-assisted analysis of clinical CT scans to quantify steatosis, they uncover previously undescribed liver fat-associated genetic variants. Park, MacLean, et ...
Gespeichert in:
Veröffentlicht in: | Cell reports. Medicine 2022-12, Vol.3 (12), p.100862-100862, Article 100862 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Park, MacLean, et al. conduct an exome-wide association study of liver fat content in the Penn Medicine BioBank.1 By leveraging machine learning-assisted analysis of clinical CT scans to quantify steatosis, they uncover previously undescribed liver fat-associated genetic variants.
Park, MacLean, et al. conduct an exome-wide association study of liver fat content in the Penn Medicine BioBank.1 By leveraging machine learning-assisted analysis of clinical CT scans to quantify steatosis, they uncover previously undescribed liver fat-associated genetic variants. |
---|---|
ISSN: | 2666-3791 2666-3791 |
DOI: | 10.1016/j.xcrm.2022.100862 |